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PREFACE

THE theory of Acoustics has great beauty. It also possesses a

peculiar satisfaction for the student because of the concreteness of

the fundamental assumptions and the relative certainty of their

essential correctness. Moreover, in recent years, the study of

acoustics has become of greater practical importance. In general
the theory has not preceded application: speech and musical instru-

ments have been developed by the experimental method and the

same is true of the earlier stages of architectural acoustics. .But in

recent years, with the advent of radio and the loud speaker, of

keener interest in the acoustic side of telephonies and of the use

of acoustic devices in national defense, development has been guided

by theory. This more extensive use of acoustics demands a greater

availability of clear exposition of the essential parts of the theory
and a presentation with the modern applications uppermost in

mind. For this purpose the present work has been prepared. It

is an outgrowth of special lectures given in a graduate course in Elec-

trical Communications at Yale University by the first named author,

but its final form has been made possible largely through the efforts

of the second author, who has at the same time used the manu-

script as a text in a graduate course.

The authors have drawn heavily upon classical works for theory

(Rayleigh in particular, as must of necessity be the case in any
text on theoretical acoustics) and upon the researches of the past
decade for applications and additional theory. This indebtedness

is amply indicated by references throughout the text and need not

be further emphasized here.

A book on the theory of acoustics might well have a thread of

mathematical continuity running throughout. But the authors

believe that adherence to this policy would defeat the purpose of

the present work, for here the applications are made the foci of

interest in the theory. On this account the material is presented
more nearly by what is known in legal education as the "case

method." Nevertheless, the whole is tied together by ample cross

references which should assist the reader in the use of the book.

The first chapter contains the discussion of a number of inter-
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esting phenomena that are to be carried in mind throughout any
consideration of acoustic applications. At the close of this chapter
there is introduced the fundamental theory of acoustic waves in

fluids. These last-named sections need not be mastered by the

student at his first reading, but they contain deductions of the

basic formulas which are used throughout the remainder of the

text. Some of the more complicated theoretical deductions are

relegated to the Appendices in order to prevent undue burdening
of the text, while certain aspects of acoustical theory are omitted

entirely since they are readily available in numerous treatises. In

general, the endeavor has been to stress physical aspects and prin-

ciples rather than formal mathematical procedure. Nevertheless,
no effort has been spared to make the analysis, wherever given,
clear and convincing.

The present work is unique in its stress on the important re-

searches of the past decade and in the useful combination of material

both from the theoretical and practical viewpoints. Attention may
be called to the emphasis placed on such topics as the general

problem of acoustic transmission through conduits, the effects of

branch lines, acoustic wave filters, acoustic coupling, submarine

signalling, and physiological and atmospheric acoustics. In the

discussion of these and other topics every effort has been made
to bring the book up to date, so that the student and general reader

will obtain a broad as well as a detailed picture of the present
activities of the science of acoustics.

The authors desire to acknowledge their indebtedness to the

stimulating interest of Professor H. M. Turner of Yale University,
at whose invitation the material for the course of special lectures

for his students was first prepared. The second author wishes par-

ticularly to express his deep appreciation of the great encouragement
and assistance given by his colleagues of the Department of Physics
at Yale University during the preparation of the manuscript, which
was completed while he was a member of that department. He also

desires to express his gratitude to his wife, Rachel T. Lindsay, for

very material assistance in the preparation of the manuscript and the

reading of the proof.
G. W. S.

R. B. L.

July, 1930.
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CHAPTER I

SOME SIMPLE PROPERTIES OF ACOUSTIC WAVES FUNDAMENTAL
THEORY

i-i. Definition of Acoustic Wave. The name " wave "
is given

to any propagated alteration in the physical condition of a

medium. In acoustics it may be thought of as a propagated change
in amplitude of pressure, particle displacement, particle velocity or of

density. Thus, if the particle displacement be denoted by ,
the

most general expression for the propagation with velocity c of a

plane wave of particle displacement in the positive x direction is

where/ is any arbitrary function of the argument (ct x). At the

point x = XQ at time / = o, the displacement is/( #Q), while at the

later time / = /o, the displacement is/[V/o (f/o + #o)l ~ f( #o)

at the point x = ct$ + XQ. In other words the disturbance at XQ

has traveled to XQ + ct$ in the time /
, corresponding to progression

in the positive x direction with velocity c. In acoustics we have

for the most part to deal with simple harmonic plane and spherical

waves, i.e., wherein f is a circular function. For example, it will

be shown in Sections 1-12, 1-13, 1-14 (see Eqs. (1-23) and (1-42))

that for a simple harmonic plane wave travelling in the ^-direction

the excess pressure (i.e., the difference between the actual pressure
at a point at any instant and its equilibrium value) is given by

5/>
= kcp^A sin k(ct x) y

while for a simple harmonic spherical wave,

, / . \sm k(ct r),

wherein the various quantities are defined as follows:

/, the time elapsed,
x

y
the distance from the fixed origin of rectangular coordinates,.

r, the distance from the sound source,
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//, A' ^ constant amplitude factors, i.e., amplitude of the velocity

potential, the quantity whose gradient is the particle

velocity. (See Sec. 1-12.) A thus has the dimensions

of [//]
2
/TT]- A'IT has the same dimensions in the case

of spherical waves,

Po, mean equilibrium density of the medium,

c, the velocity of the wave,

, 27T CO

k, constant = "
,

where X = wave length or distance between two successive maxima,
and cu = ITTP = ITT times the frequency of vibration.

The above are the two types of waves which are most important
in acoustics. Of the two, more use of plane waves is made in

practice. For spherical waves at a great distance from the source

may approximately be treated as plane, and the same is true of

waves passing through a tube whose cross section is not rapidly

varying. Cylindrical waves are treated in some texts l but we shall

not emphasize them here. An ample discussion of spherical waves

will be found important, however, in the case of sound signalling

(Chap. X).
1-2. Reflection from a Plane Wall. Acoustic Image. The

actual vibrations in acoustics are too complicated to follow in one's

imagination. The fundamental equations to be deduced in the

latter part of this chapter relieve one of any need of attempting
to envisage the details. But even with the general conception of

wave motion one can scarcely picture the effects of superposing a

multitude of waves. Consider for example the difficulty involved

in computing for any point the effect of a source placed in front of

a rigid plane wall of infinite extent. The resultant effect is caused

by the waves coming directly from the source and by the waves

reflected from every part of the area of the wall. Such a compu-
tation would be unnecessarily involved, for by the brief considera-

tion that follows it is possible to simplify greatly the theory. This

resort to general reasoning in advance of mathematical processes is

usually very fruitful, as this example beautifully illustrates.

Consider a source of sound O near a plane wall AE (Fig. 1*1).

The question arises, what is the effect of the wall on the sound

waves? Draw the line through normal to the wall and consider

1
See, for example, Lamb, Hydrodynamics, 1916, p. 520.
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the point 0' on this line as far behind the wall as is in front of it.

Then imagine a like source of sound placed at O' of the same fre-

quency and phase
l as that at 0, and suppose the wall removed.

Now at any point P on the imaginary

plane normal to the line 00' and passing

through its midpoint, the resultant dis-

placement due to the two sources O and

0' will at any time be in the plane, for

the components normal thereto cancel

each other. Hence, we can now replace ,

the plane by a hypothetical rigid wall of

zero thickness without altering the result-

ing wave motion, showing that, on the

right hand side, the effect of the wall on

the sound from is the same as would

be produced by the introduction of a

like source at 0' and the removal of the p1G

wall. The reflection of a spherical wave
from an infinite wall would, at first glance, seem like a compli-
cated problem, for the effect of the reflection from every point of

the wall must be considered. But the above reasoning simplifies
the whole matter to the computation of the effect of two spherical
waves. We shall call O f

the acoustic image of 0, by which we may
determine quantitatively the reflection of sound from the wall.

The reflected sound, that is, the sound from the image, is called the

echo.

The practical importance of natural echoes has recently been

realized in connection with the detection of icebergs by the reflec-

tion of underwater sound waves from their surfaces, and the meas-

urement of the depth of the sea by the echo therefrom. Both these

will be discussed further in Chapter X. Interesting material on

natural echoes will be found in the work of Tyndall.
2

It is clear that, in the discussion of reflection, the wall above

considered need not be geometrically plane in order that an image

may exist. It may be rough provided that the variations from

1 Two sources of sound of the same frequency are said to be in the same phase
when the maximum disturbance at each source takes place at the same time.

2
See, for example, Tyndall, Lectures on Sound, 1867, p. 17 ff. See also the de-

scription of aerial echoes in the same author's article on fog signals in
"
Fragments of

Science."
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planarity are small compared with a wave length of the reflected

sound. Naturally, the "rougher" the surface the more diffused

will be the image.
A multitude of echoes following closely upon one another pro-

duce the effect known as reverberation. This is apt to be of special
moment in large closed spaces where the reflecting surfaces are

widely distributed, and constitutes a very important problem in

auditorium design and architectural acoustics generally. Details

on this point will be found in Chapter XI.

1-3. Huyghens' Principle and Application to Practical Reflec-

tors. To discuss reflection in a more general fashion we need the

concept of wave front. The wave front is a surface so drawn that

at all its points the wave has the same phase;
1 that is, the particles

of the medium on this surface reach their maximum positive or

negative displacements at the same instant. Thus, for example,
the wave fronts of the sound wave from a point source in a homo-

geneous medium are spheres with the point as center. If in any

particular case the wave front is given at a certain instant of time,

that for any subsequent instant can be found by means of an

important theorem known as Huyghens' principle. This states in

effect that each point on a wave front may be assumed to be the

source of a hemispherical wavelet and that the new wave front is

the mathematical envelope of these wavelets at any subsequent
instant. This principle can be stated in more exact form 2 and

rigorously derived, but we shall be content here with the above

statement.

From optics we know that when light is allowed to pass through
a hole in a wall we get a more or less sharply defined "beam."

In acoustics also it is possible to produce a beam of sound if, as in

optics, the dimensions of the hole are large compared with wave

length. For example, consider a plane wall with a vibrating area

of dimensions satisfying the above condition (Fig. 1-2). For points

along A'E' (i.e., in a beam normal to the wall) the Huyghens'
wavelets will reinforce each other, while for points outside this

beam, such as Py
there will be destructive interference with conse-

quent loss in intensity. Most of the resulting sound may therefore

1 A careful discussion of the meaning of the expression "phase of a wave" will be

found in Section 1-17.
2
See, for example, Rayleigh, Theory of Sound, II, 1926, 283. Also Drude,

Theory of Optics, Eng. Ed., 1902, p. 179 ff.
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be said to be confined within a region bounded (roughly) by AC
and BD. If the wave length is decreased a sharper beam results;

increasing the wave length causes the beam to spread out and the

resulting wave front becomes more and more nearly hemispherical.

B

FIG. 1-2. FIG. 1-3.

The above discussion leads at once to a consideration of the

reflection of sound from finite areas. Consulting for this purpose

Fig. 1-3, we see from the preceding paragraph that the reflection

from a plane area AE (here assumed circular for convenience) of

the sound from a source O is equivalent to that part of the sound

from the image O
f which is included within the cone AO'B. (Note

that the total sound from 0' is strictly equivalent to reflection

from an infinite wall.) Now if the diameter AB is large compared
with the wave length, the reflected sound will remain approximately
within the cone and we shall have a reflected conical beam. But
if the diameter AB is much less than a wave length there will be

little phase difference in any direction such as P, Fig. 1-2, of waves

from different parts of the reflector, and consequently little inter-

ference in any direction at all. This means that the reflection will

not be in the form of a beam, but that the sound will be scattered

in all directions. Between these two extremes there are gradations
from a well defined beam to diffuse scattering. It is worth noting
that decreasing the size of a reflector lowers its effectiveness in two

ways, viz., (i) in diminishing the actual amount of sound reflected,
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and (2) in scattering in all directions that which is reflected. Con-

versely we may make the important statement that the effectiveness

of a small reflector increases much more rapidly than its area.

Coming now to practical mirrors other than plane, it is a well

known optical fact that, for a parabolic mirror, a wave front normal

to the axis is brought to a focus at the mathematical focus of the

mirror. More careful study shows that in the actual case this is

not a mathematical point but merely the region of phase agreement
and consequent reinforcement of the reflected waves. This region
must therefore have dimensions of the order of a single wave length.

From the relatively long length of sound waves, it is seen that sound

focusing in such a mirror is very rough compared with the case of

light. Thus, for a frequency of 100 cycles the focal spot, as it is

called, is of the order of 1090/100 ft. = n ft. approximately, while

even for the rather high audible frequency of 1000 cycles it is i.i

ft. approximately. Similar remarks pertain to elliptical reflectors.

Both types show a definite selectivity with regard to frequency,

focusing high tones much more sharply than low ones.

As a fact which has an important bearing on sound signalling

in water, it should be noted that, because of the greater velocity of

sound in water, the wave length of a sound of given frequency is

about four and a half times as great in water as in air. From the

above discussion it is clear that a given reflecting area under water

scatters sound of given frequency to a greater degree than the

same area in air. Conversely, for good reflection in water one must

use larger reflecting surfaces than are necessary in air.

This is an appropriate place to point out that whereas, accord-

ing to the common view, horns and trumpets owe their properties

to the collection of sound by reflection from their inner surfaces,

the above discussion shows that such optical-like reflection does

not occur. The real explanation of the effectiveness of these in-

struments (i.e., their resonating properties) is reserved for a later

section. (See Chap. VI.)

1-4. Selective Property of Plane Reflectors. The use of Fres-

nel's zones in optics is well known. Their application to acoustic

waves leads to the consideration of an interesting selective property
of reflectors. Consider the circular disc ACE in Fig. i -4 and sup-

pose that all points of it are vibrating in the same phase. The total

effect at the pole will be that due to the superposition of the

contributions from each point of the disc. Draw about C as a



SOME PROPERTIES OF ACOUSTIC WAVES

center a circle of radius CD such that the difference between OD
and OC is small compared with one wave length of the sound being

produced by the disc. Then, draw other circles about C in such

FIG. 1-4.

a way that each annulus has the same area as the central circle.

This will obviously be the case if the radii are chosen in the ratio

of the square roots of the natural numbers. Each annulus may
be thought of (for the moment at

least) as contributing approxi-

mately the same amplitude of

vibration at Oy but with differing

phase. Hence the contributions

must be added vectorially and

the result of the summation will be

to increase the effective amplitude
at O until we reach an annulus

such that the difference between

its distance from and the dis-

tance CO is exactly one half wave

length. The following figure

(Fig. i -40) will help to make this

clear. If we represent by Oa the
FlG

amplitude of vibration at O pro-
duced by the inner circle, then ab will represent that produced by
the first annulus, and the sum of the two vectors Oa and ab (namely
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/?]) will represent the resultant effect at due to both circle and

annulus. Similarly as further annuli are considered, the vector

summation tends to increase the magnitude of the resultant until

we reach that annulus which produces an amplitude at O exactly

out of phase with Oa. This is represented in the figure by ef. The
resultant having reached a maximum now tends to decrease as

further annuli are considered, and so the effective amplitude at O,

as is clear from the figure, will become a minimum when we reach

that annulus for which the difference between CO and its distance

from O is one whole wave length. This minimum is not exactly

zero, since as the points on the disc get farther from their influ-

ence does decrease slightly (with the inverse square of the distance,

as a matter of fact). This discussion then indicates that as the

area of the disc increases, the effect at passes through a series of

maxima and minima which depend on the frequency of the sound.

The same considerations apply, of course, to a plane wave reflected

normally from a plane mirror, wherein the effect at O is thought
of as due to the sound reflected from the disc ACE. It thus devel-

ops that, for a given frequency of sound, there is an optimum size

of minor to give the greatest effect at O. Conversely, a mirror of

definite size will produce maximum effect at for one definite

frequency.
As a practical example of this selective property the pinnae or

auricles of the ear suggest themselves. Due to their relatively small

size, however, it is clear that for sounds of ordinary wave length
and pitch their effect is small. For a sound of a frequency of 10,000

cycles, on the other hand, their influence is very noticeable, as may
be observed by holding a watch (the ticks of which contain some

high frequency components) first in front of the head and then

behind the head. In the same connection we should note the effect

of
"
cupping" the ears with the hands.

The use of reflectors is not limited to points distant from the

source, but frequently occurs at the source of the sound itself.

For example, it will be shown in Section 1-19 that if a source is

placed at an infinite wall, the output is greatly increased. From
the discussion in this section, it is observed that even if the reflector

is small, there would be a gain in output. Such a reflector is called

a "baffle plate" and is found in use in the flat rim surrounding
loud speakers, both of the horn and cone type. The effect of such

a plate at a distant point can be determined by a computation



SOME PROPERTIES OF ACOUSTIC WAVES 9

following the suggestions above. Consider a source at the point C
in Fig. 1-4 and the effect at of reflection in the neighborhood of

A. The path of the sound must be considered to be from C to A
and A to O. The phase difference produced by this length of path

(and the reflection) is then utilized in computing the effect at O.

Otherwise, the method follows that discussed above. It is obvious

that baffle plates not only reflect but also form shadows and have

a screening effect.

1-5. Reflection at a Change in Area of a Conduit. While we

are considering the general problem of sound reflection, it will be

worth while to note that a sudden change in the cross sectional area

of a pipe through which sound is being transmitted will give rise

to a reflected wave. Thus consider the diagram (Fig. 1-5) with

FIG. 1-5.

sound traveling in the direction of the arrow. The cross sections

are Si and S% respectively. At the point P in the junction, the

following boundary conditions must be fulfilled: (i) the pressure
at P must be the same on both sides, i.e., there must be no dis-

continuity in pressure as we pass through P> and (2) the rate of

volume displacement of fluid at P is the same on both sides (the

ordinary continuity principle in hydrodynamics). In a later sec-

tion (Sec. 3 -5) it will be rigorously proved that the application of

these conditions leads to the following expression for the ratio of

the reflected intensity to the incident intensity:

S> V
SiJ

This value, being independent of the sign of S% Si, is the same
for either direction of the wave.
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1-6. Velocity of Sound. It will be shown in Section 1-13 that

the general expression for the velocity of a compressional wave in

a compressible fluid is

which for the case of adiabatic change becomes

where 7 is the ratio of the specific heat at constant pressure to that

at constant volume. The general gas equation is

where V denotes volume, T the absolute temperature, and R is the

gas constant. Since p varies inversely as V^ it is seen that if T
remains constant p/p is constant and the velocity of sound in a

gas is independent of change in pressure. However, the velocity
does depend on temperature. For, introducing the mass m, we
have the general expression

c =
m

Therefore, if we denote by r the velocity of sound in air at o C
and by Ct the velocity at / C, and apply eq. (1*2), we have

c* = <r Ji +-- (1-3)

The velocity of sound in a liquid like water also depends on the

temperature. The general expression (Sec. 1-13, eq. (1*30)) for the

velocity is

where E is the volume elasticity. Using the compressibility
= i/E instead, we have

Now both K and p (for temperatures above 4 C) decrease with

increasing temperature, though the relations are, of course, em-
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pirical.
Thus for low pressures in sea water we have: *

K = 481 X io~7 -
340 X io~9

/ + 3 X io~9
/
2
,

where / is the temperature on the centigrade scale. There is no

empirical formula for the dependence of p on the temperature for

a very wide range of temperature. A few selected values for dis-

tilled water will suffice. Thus if the density at 4 C is taken as

i.oo,
2 that at 15 C is .99913, at 30 C is .99567, at 60 C .98324,

and at 100 C it is .95838.

i -7. Convective Refraction. The refraction of sound waves in

a single medium like the atmosphere can take place in two ways,

viz., by the effect of wind and by the effect of temperature varia-

tions from place to place. The former phenomenon is known as

convective refraction. We shall discuss it first. Consulting Fig.

1*6, let AE denote the boundary between two adjacent regions of

Fio. 1-6.

air in the lower of which the wind velocity is u\ (supposed to be

in the direction AE) and in the upper of which it is 2 , where u% > i;

these velocities are relative to the stationary axes in Fig. i -6. Let

a plane wave front AC meet the boundary at A, with angle of

incidence B\. If there were no wind the direction of propagation
in the lower region would be simply CB' normal to AC. The
effect of the wind is to carry the medium bodily and hence to shift

this direction to CB, where BB'/CB' =
Ui/c> c being the velocity

1 See Aigner, Unterwasserschalltechnik, 1922, p. 46.
2 Smithsonian Tables.
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of sound in air. If the time from C to B be r, then r = CB'/c
= BB'/Ui. To obtain the wave front in the upper region we note

that in time r the upper medium moves AA' u 2 r. The position
of the wave is hence the same as if it had originated at A ' and in

time r the disturbance originally at A is at D, where /I'D = cr;

DB can be shown by taking intermediate points to be the wave
front in the upper region and AD is the direction of propagation.
It is interesting to note that in neither region is the direction of

propagation normal to the wave front, a fact due to the motion

of the medium with respect to the observer.

From Fig. 1*6, the relation between 0i and 2 > i.e., the law of

refraction, may be readily obtained. For we have simply:

A'B AB f + B'B - AA'^_
A'D cr cr

""
c

that is,
1

csc 62
- csc 0! = '^~~^

(1-5)
c

If the "ray" directions are given by \l/\ and fa respectively we can

also ascertain their values in terms of 0i and 0%. For if we draw
DN normal to AB> Z A'DN = 2 , and it follows that

tan*2
= tan02 + 2̂

.

(1-6)

There is an exactly similar eauation, with all the subscripts unity,
for the incident ray.

If the values are such that

then, since there is no value of esc 2 that is less than unity, the

reflection must be total. The critical angle is, of course, that for

which esc 2
= i.

It should be emphasized that the above discussion is by no

means complete, since in the actual case there is no sharp boundary
between air regions of differing wind velocity. The variation is

always a more or less gradual one. Nevertheless a more detailed

study can follow the above lines by dividing the medium into thin

strata.

1 We shall derive a more general equation for sound refraction in Chapter XII

(Atmospheric Acoustics). (Sec Sec. 12-2.)
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Keeping in mind the discussion in this section the reader will

have no difficulty in understanding why sound in air will often pass

more readily in one direction between two points than in the other,

and also why elevated sources are very advantageous in trans-

mitting to windward. It must be borne in mind, however, that

in any discussions such as the above we do not have a beam of

sound as in light. For example, one could not secure a plane sound

wave sharply limited to a given area of cross section, and conse-

quently could not secure total reflection. As has been noted before

and as will be emphasized again, the production of a beam of sound,

due to its long wave length, is in general a difficult matter.

1-8. Temperature Refraction. Let two strata of air with boun-

dary AB' (Fig. 1-7) be assumed at rest and at temperatures /i and

/2 respectively, with correspond-

ing sound velocities c\ and c^ y

where ci>c\. The incident wave

front is AB in the stratum of tem-

perature /i and the angle of inci-

dence is 0i. The refracted wave

front is A'B' with angle of refrac-

tion 2 . The construction of the
' IC * * 7 "

refracted wave front follows at once on the application of Huyghens'

principle, for AA'JBB' = c*/c\ and in this case the rays are normal

to the wave fronts. The law of refraction is

sin02/sin O l
= cz/Ci, (1-7)

which is the ordinary law of Snell in optics. Naturally, in practice

there is no sharp boundary but a more or less continuous variation

in temperature with a corresponding continuous bending of the

wave front. Usually the effects of both wind and temperature

occur simultaneously.
From the discussion above it is seen that a negative temperature

gradient (i.e., coldest air nearest the ground), such as obtains near

the surface of the earth in the early morning hours after a clear

night, tends to produce a bending of sound wave fronts toward the

earth, increasing the range of sound transmission. The ordinary

day time condition is a positive gradient and in this case the wave

fronts are bent away from the earth, considerably reducing the

range. Here again wind introduces a complicating factor.
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1*9. Scattering by Selective Reflection and Refraction. In view

of the discUvSsion of the preceding two sections it is not surprising

that atmospheric conditions exercise an important influence on the

propagation of sound in the air. The various strata of the atmos-

phere are not always horizontal or even plane. In the case of

prominent irregularities, we should then expect a great deal of

scattering by reflection and refraction. Moreover, this scattering

should he selective, i.e., greater for short wave lengths than for

long wave lengths. This has actually been found to be true in

experiments
l on airplane detection under what may be termed

"poor listening" conditions. In these tests the sound from an

airplane at the greatest hearing distance was found to be limited

to the lowest frequencies in the emitted complex sound. The effect

of the scattering on the decay of sound intensity was also well

illustrated by the same experiments. As will be shown later, the

falling off in intensity of a sound wave in a homogeneous fluid is

proportional to the inverse square of the distance from the source.

The listening apparatus used in the experiments iust mentioned

had an amplification factor of 100, so that under the best conditions

one should have heard a sound 10 times the distance it could be

heard with the ear alone. As a matter of fact, on bright sunny

days with cumulus clouds forming, the airplane noise range was

only twice that of the unaided ear. Even under the best night
conditions the range was only three times that of the ear alone.

Selective scattering also plays an important role in submarine trans-

mission as will be noted later (Chap. X).
The interesting silence areas observed during the propagation

of an explosive wave may also be traced to meteorological conditions

of wind and temperature. Reference on this point may be made
to the interesting theory of Esclangon.

2 Wiechert 3 has developed
a theory to account for the same phenomenon by postulating a

reflecting layer some 50 km. above the earth's surface and the inter-

ference of the normal direct wave and the reflected wave (as witness

the analogous phenomenon in radio wave transmission with the

1 See G. W. Stewart, Phys. Rev., 14, 376 (1919).
2 E. Esclungon, Comptes Rendus, 178, 1892, 1924. For further observations on

silence zones, see the work of Dufour, Deslandres, Villard, Maurian, Collignon in

volumes 178 and 179 of the Comptes Rendus.
3 E. Wicchert, Meteorolog. Zeitschrift, 43, 81, 1926. For further German work

in this field see J. Kolzer, Meteorolog. Zeitschrift, 42, 457, 1925 and W. J. Witkiewitsch,

Meteorolog. Zeitschrift, 43, 91, 1926.
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postulation of the Heaviside layer). Esclangon (loc. cit.) casts

grave doubt, however, on this explanation.

More recent investigations
l seem to indicate that the most

probable single explanation for the abnormal zone of audibility is

to be found in the reversal of the temperature gradient, producing

at heights above 30 km. temperatures which are of the same order

as that at the surface. It is evident that such a state of affairs

would be effective in producing the necessary bending of the wave

fronts to account for the distant audible zone. The presence of

such a high temperature layer has already been indicated by the

study of meteors and it is believed that the temperature is main-

tained by the absorption of solar energy by the ozone layer whose

center of gravity is in the neighborhood of 45 to 50 km.

i-io. Diffraction. Sound Shadows. Any change in the direc-

tion of propagation of sound waves, not caused by a variation in

the properties of the medium but by the bending of the waves about

FIG. 1-8.

obstacles, is ascribed to diffraction, which is thus an extremely

important acoustic phenomenon. On its occurrence depends in

large measure our ability to hear sounds from all directions, and

there is hardly a technical application of acoustics which does not

in some way involve diffraction. One of the most interesting and

typical diffraction problems is that of the sound shadow cast by
the human head, whether of speaker or auditor. This is most

1
See, for example, E. H. Gowan, Nature, 124, 452, 1919 (Sept. 2i).
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easily treated by the discussion of the ideal case of a rigid sphere.

Consulting Fig. 1-8, let the circle represent the cross section of

the rigid sphere. (The word rigid is to be interpreted to mean
that the sphere does not vibrate under the influence of any sound

which may happen to fall on it.) A is a point source on the sphere,
and the problem is to determine the relative intensity of sound at

points which, like P and P' y are equidistant from the sphere but

I
.75

2 A=120 cm. . r = 1910 cm.

3 Jl=l20cm. r* 477cm.
4 fel20cm. r= 19.1cm"

79.0

10.6

15

8-
30 45 75 90 105

Degrees

FIG. 1-9.

120 135 150 165 180

at different azimuths with respect to the source. The complete

theory has been presented by Stewart,
1

following the initial work

of Rayleigh and others, and reference should be made to his article

for details. Briefly stated, the method of calculation consists in

setting up the general equation of wave motion (eq. (i'i6) of Sec.

1-12) using the assumption that <p, the velocity potential, is a

harmonic function of the time and employing three dimensional

polar coordinates. This equation is then solved for <p with the

insertion of the boundary conditions imposed by the presence of

the sphere. As soon as the value of <p at any point in the neigh-

borhood of the sphere is known as a function of the distance from

the sphere and the azimuth, the intensity can be found by a single

transformation (for as will be seen later (Sec. 1-15) the intensity

1 G. W. Stewart, Phys. Rev., 33, 467, 1911. See also R. V. L. Hartley and T. C.

Fry, Bell Sys. Tech. Jl., i, 33, 1922.
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is proportional to the square of the condensation and hence to

(d<0/d/)
2
). The actual computations are somewhat complicated,

but the results may be clearly ;>een from an examination of Figs. 1-9

and i-io.

15 30 15 t>0 73 90 105 120 U3 130 1(,5 IbO

Fig. I -9 refers to a sphere whose circular section is 60 cm in

circumference and plots for a wave length of 120 cm, the ratio of

the intensity at a distance OP' (Fig. 1-8) for any angle (from o

directly in front to 180 directly behind A} to the intensity when
6 = o. There are four curves, corresponding to four values of r

(the distance OP') ranging from r=oo to r = 19.1 cm. The
results are rather striking, showing that for great distances the

variation in intensity with azimuth is small, but that close to the

sphere there is a marked variation, the intensity at 90 falling to

less than Vio that for = o. In each case, however, there is a

maximum intensity directly in front and directly behind.

Fig. i-io shows the effect of modifying the frequency while the

distance is kept constant. The curves refer to the same sphere as

Fig. i 9, but all the curves (except the bottom one) are computed for

a distance of 477 cm from the sphere, the wave lengths ranging
from X = 240 cm to X = 30 cm. As one would expect from the

analogous optical case the falling off in intensity with 6 is much
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more marked for short wave lengths than for long. Here again we

notice maxima at o and 180. It is also of interest to note the pro-

gressive angular shift in the minimum with decrease in wavelength.
The question next arises: can the above theory give one a clear

idea of the shadow cast by the head when the source of sound is

at a distance from the head? This problem is fundamental in

hearing and in the perception of sound direction. That it can be

solved in terms of the discussion in this section is made apparent

by the reciprocal theorem of Helmholtz, as is indicated in the next

section.

in. Helmholtz's Reciprocal Theorem with Application to

Sound Shadow Cast by the Head. Scattering. This theorem may
be stated as follows: l "If in a space filled with air which is partly
bounded by finitely extended fixed bodies and is partly unbounded,
sound waves be excited at any point Ay the resulting velocity poten-
tial <p at a second point B is the same both in magnitude and phase
as it would have been at A had B been the source of sound." This

theorem is a special case of a very much more general principle

of reciprocity elucidated by Rayleigh.
2 It is shown that in its

general form the principle holds true when there are dissipative
forces present in the medium, i.e., when absorbing surfaces are

present, provided only that these forces are proportional to the first

power of the particle velocity. Moreover, the fluid need not be

homogeneous. On the other hand, in using the restricted principle,

one must be careful to note that the sources to which it is applicable
are simple and constant sources, i.e., sources which in the absence

of an obstacle would generate symmetrical waves.

The reciprocal theorem can be applied to the case of the pre-

ceding paragraph by assuming that the source is at the point P 9

distant r from the head and that the ear is at A. We wish then

to ascertain the effect at the ear if the source is moved about the

head. From what has been said it is evident that we can apply
the reciprocal theorem to intensity values as well as velocity poten-
tials. Hence to solve the above problem we have only to take the

intensity values directly from the Figures 1-9 and i-io, assuming that

the head is approximately a rigid sphere with the ears diametrically

opposite. The results are plotted in Fig. i-n, where it should be

noted that the ordinates are the relative values of the sum of the

1
Rayleigh, Theory of Sound, II, 294, 1896.

2
Rayleigh, Theory of Sound, I, 107 ff., 1926.
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relative intensities at the two ears as the line joining the ears is

rotated through an angle of 180 with respect to the direction of

the source of sound. The numbers on the curves refer to the dis-

tance of the source and the wave length considered. The most

I

15 30 45 60 75 90 105 120 135 150 165 180

Degrees

FIG. I'll.

interesting result is the fact that the resultant apparent intensity

is a maximum when the diameter connecting the ears is in the

direction of the source of sound, with the minimum occurring at

6 = 90 (save for very short wave lengths). Moreover for a given

wave length the variation of intensity with the position of the head

is more marked for short distances than for long, and for a given

distance is more noticeable for short than for long wave lengths.

For the possible practical applications of these facts the reader

should consult the article of Stewart above referred to.

The foregoing discussion has at least two points of merit. It

gives quantitative values for varied wave lengths and distances

and thus makes the phenomena concrete and more readily under-

stood and utilizable. In the second place, it suggests the possi-

bility of using a sphere for the location of a receiver in the problem
of sound intensity measurement. This would prevent the distor-

tion of the undisturbed intensity distribution by such an irregularly

shaped body as an ordinary microphone and substitute a known

modification. This has actually been done by Ballantine. 1

It should, of course, be noted that when sound waves meet a

rigid obstacle of dimensions small compared with the wave length

they are scattered in all directions. We shall not examine the

1 S. Ballantine, Phys. Review, 32, 988, 1928.
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scattered wave analytically,
1 but it is worth while to summarize

briefly the results of calculations on this point. These show that

the amplitude of the scattered waves at any point distant from the

obstacle is directly proportional to the volume of the obstacle and

inversely proportional to the square of the wave length. The inten-

sity of the scattered sound therefore varies inversely as the fourth

power of the wave length, analogously to the optical law of the

scattering of light by very small particles. Lord Rayleigh has

pointed out an acoustical illustration in the so-called
"
harmonic

echoes." If a compound musical note is sounded near some dif-

fracting obstacles like a grove of trees, the intensity of the octave

as compared with the fundamental in the scattered sound is found

to be many times what it was in the original note. The scattered

sound may thus appear to be raised an octave in pitch.

i -12. Introduction to the Fundamental Theory of Acoustic

Waves in Fluids. General Wave Equation. In this book the

exposition of the theory does not proceed in an orderly manner

from beginning to end, but rather is presented where actually used.

Such a plan is impracticable unless the reader may be assumed to

have in his possession the derivation of the most important funda-

mental equations. This is the purpose of the next five sections of

this chapter. The reader need not digest them at once but may
acquaint himself with the assumptions and processes involved as

he finds references to the fundamental equations derived herein.

Whenever a disturbance is created at any point in a compres-
sible fluid there is a propagation of that disturbance throughout
the fluid. We desire to study the characteristics of this propaga-
tion. For this purpose the following symbols must be introduced:

Xy y> 2
>
coordinates of a particle of the medium,

Uy Vy Wy component velocities of a particle of the medium,

py density,

py pressure in the medium,

Cy velocity of propagation of the disturbance,

Sy the condensation, defined by the relation s = -

Po

=
,
where po is the constant mean density at any point,

Po

py the velocity potential,

, fiy f , the component particle displacements along #, y y
z axes.

1 See Lamb, Dynamical Theory of Sound, 1925, p. 244.
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Of the above quantities all except c are functions of x y y, z and /.

We have now to define the velocity potential, the most important

single quantity in the study of the irrotational motion of fluids.

This is done in the following equation:
l

Let us consider a small volume element of the fluid. The
difference between the efflux and influx of the medium in this ele-

ment is equal, by the so-called principle of continuity, to the time

rate of growth of mass in the element.

The most simple method of obtaining the mathematical expres-
sion of this principle is by the consideration of the elemental paral-

lelepiped of dimensions A#, Aj, Az. By considering the influx and

efHux through each pair of faces respectively, the difference between

the latter and the former for the whole cube is found to be:

Moreover, the rate of growth of mass in the cube is clearly dp/dt X
AtfA^Az. Equating these two quantities we get the following
relation:

dp d(pu) d(Pv)- "

If in this equation we make the substitution p = p (i + j), we
have:

du . dv . dw\ ,
/ 6V

,

ds
,

ds

Now in acoustics the condensation is a very small quantity com-

1 In the definition of <f> there is no general agreement as to sign, some authors,

d<p
as for example Lamb and Crandall, preferring the negative sign (i.e., u = --

, etc.),

while others, including Rayleigh, use the positive sign as above. The former usage

serves merely to emphasize an analogy to the electrostatic and gravitational potentials,

which it does not seem necessary to the present authors to press unduly.

Naturally our use of ^ implies its existence, which in turn implies that the prin-

cipal motions of a fluid of concern in acoustics are irrotational. (See Rayleigh, Vol.

II, Chap. XI.)
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pared with unity. Thus, for example, atmospheric pressure is

approximately io6
dynes per cm2

, and the variation in pressure

from the mean in a sound having the intensity of conversational

speech is, roughly, io~l

dyne per cm2
. For an adiabatic change

it is well known that dpIdp
=

7/>/p, where for air 7 = 1.41. Hence

s = 5p/po is of the order of icr7
. It can also be shown that , 0,

w are usually of the order of IO""1 to io~~2 cm per sec. Moreover,
acoustical wave lengths are so long that uy vy w and s change very
little with #, y, z. Hence du/dx y ds/dxy etc., are very small quan-
tities. We can therefore neglect terms like s(du/dx) and u(ds/dx)

in comparison with du/dx and to this approximation the continuity

equation becomes:
ds . du . dv

,
dw f ^

^+d-X + d-y

+
Tz

= ' <MO>

Substituting from (1-8) we have:

ds e*y ay ay
a/^d^^a/"

1
""

az2
'

or

o (i-ii)

in the more compact notation.

To replace (i-n) by an equation in which <? is the only inde-

pendent variable we must have recourse to the hydrodynamical

equations of motion, which are :
1

du
,

3u
,

du
,

du i dp--L. it --L_ fi --L
vaj
- - --- .

df^dx^dy^dz pdx*

and two similar equations for v and w, wherein the left-hand side

represents the acceleration of the medium in the x direction and the

right-hand side the force per unit mass, and there are no external

forces acting. From what has been said above about the orders of

magnitude of these quantities we can neglect u(du/dx), etc., com-

pared with du/dty etc. Our equations of motion then take the simpler
form:

1
See, for example, Lamb, Dynamical Theory of Sound, 2d Edition, p. aoi. We

have been discussing continuity. As will be noticed throughout this book, a useful

differential equation is obtained by considering not only continuity but also motion.

Consistently, therefore, we will combine these two views of the state of affairs. This

is illustrated by our present recourse to the equations of motion.
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?? L%P
dt
"

p to
'

dv
__ d/>

d/
~

p dy
'

dtv _ l^dp
dt
~

p^z'

If we substitute into these equations u = d<p/dx, etc., multiply the

three equations by dx, dy y dz respectively and add, we have

d , i ,-dv =--dp,
or integrating:

where the integration is to be thought of as extending from a point
in the wave where the velocity potential and excess pressure have

values different from zero to a point where they are both zero.

Since p changes but little it will be approximately correct to remove

it from under the integral sign, calling it po, the mean density.

Then f dp reduces simply to the excess pressure, and if we write

it dp to avoid confusion, we have the approximate relation

Now there is a relationship between the pressure and density
of the fluid. Ignoring for the present its exact nature let us set

dp
= c28p. But dp = POJ by the definition of condensation, and

hence there follows the important relationship

(1-14)

Moreover (i'i3) now becomes

which is a general equation connecting velocity potential and con-

densation. If we substitute from (1-15) into (i-n) we have finally

(1-16)
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which is the familiar equation of wave motion. The general solu-

tion of (1-16) shows l that the influence of any value of <p is propa-

gated with velocity f, and that therefore the velocity of any type

of wave motion may be regarded as c. In what follows it will be

shown specifically that this is true for plane waves and spherical

waves, but it is to be remembered that c has the general significance

stated.

I -13. Plane Waves. The equations of the preceding section

are perfectly general, their validity being limited only by the con-

tinuity of the medium and certain approximations requiring waves

of small amplitude. Of course, the medium is never, strictly

speaking, a continuous one, but a remark concerning the case of

a gas will make clearer the justification of the assumption of

practical continuity. From the kinetic theory of gases it follows

that for a diatomic gas the velocity c of sound is 0.68 of the root

mean square molecular velocity, #.2 For a monatomic gas the factor

is 0.74. This is true irrespective of temperature and density.

Since c and u are of the same order of magnitude, the condition of

continuity is sufficiently well met in gases.
3 In liquids and solids

we are dealing with molecules which are closely packed and gov-

erned by molecular forces. Here the condition of continuity is

closely approximated. If ^ is a function of x and / only we have

the familiar problem of plane waves, which we shall now study in

detail. The wave equation (1-16) then reduces to 4

1 See Jeans, Electricity and Magnetism, 1925, p. 521.
2 See Jeans, Dynamical Theory of Gases, 1916, pp. 374-377.
3 For very high frequencies it is evident that the study of the passage of a sound

wave through a gas is going to involve kinetic theory considerations. In particular

it will be necessary to take into account the relatively slow rate of exchange of energy

between the translational movement of the molecules and their internal degrees of

freedom. This has been done by some recent investigators. (K. F. Herzfeld.and

F. O. Rice, Phys. Rev., 31, 691, 1928; D. G. Bourgin, Phil. Mag., 7, 821, 1929; Phys.

Rev., 34, 521, 1929.) It is shown that for very high frequencies the velocity of propa-

gation in gases should increase slightly with the frequency. Earlier experimental

work by G. W. Pierce (Am. Acad. Sci., 60, 271, 1929) indicated the existence of such

an effect but more recent work by the same investigator shows that in air at least

the effect is not measurable. Bourgin states that this conclusion is not in conflict

with his kinetic theory for the propagation of sound in mixed gases. Theoretical

investigations of this kind may prove of importance in connection with supersonics

(see Sec. 10-9).
4 For time derivatives we shall hereafter use the dot notation, i.e.,
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* = <*> (1-17)

of which the general solution l
is

= f(ct-x) + F(ct + x) y (1-18)

wherein / and F are arbitrary functions. The first term on the

right-hand side represents a wave moving in the positive x direction.

Thus the value of this term at x = XQ for / = o, is/( XQ), and at

x = cfo + #o at the later time / = / , will be f[cto (ctQ + #0)]
= /( #o). That is, the disturbance at #o has travelled to XQ + r/o

in the time /o- This means progress in the positive x direction with

velocity c. Similar reasoning will show that F(x + ct) represents
a wave propagated in the negative x direction.

To get equation (1*16) we placed r =
dp/dp

= dpIdp. There-

fore we see that independently of the functional relationship of p
and p, ^dp/dp gives the velocity of a plane wave in a fluid medium.

From the fact that d<p/dy and d<p/dz are both zero we see also that

this wave is a longitudinal wave, i.e., the displacements of the

medium are in the direction of propagation.
If we confine our interest to the waves travelling to the right

and assume for simplicity that they are simple harmonic waves,

we have
27T

<p
=

J(ct x) =f A cos -T-" (^ ~ v)>A

or

<p
= A cos k(ct x), (i'i9)

where k 27T/X and X = wave length or distance between two

successive maxima. The frequency v of the simple harmonic

wave is the number of waves that pass any point in one second.

It is given by v = c/\. The quantity w = ITTV is often used in

texts on acoustics and electric wave theory, being sometimes called

the "speed." (Obviously k = w/r.) A is the amplitude of ^.

The spatial variation of ^ is controlled by kx. From the eqs. (i*/8)

and (1*19) we have

u = -- == kA sin k(ct x), (1-20)
CfX

1 The solution of eq. (1-17) need not be given here. It can be found in almost

any text on differential equations. See, for example, Cohen: Differential Equations,

p. 233. Also Rayleigh: Theory of Sound, Vol. I, Art. 144.
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and from (1-15)

<P
= - czs = - Akc sin k(ct

-
#), O'Si)

so that

j = - A sin (<:/
-

*) O'22)

Moreover for the excess pressure we have dp
= c2pos (eq. (1-14)).

Whence

8p
= kcpQA sin (** #)> (i-23)

wherein we shall for future convenience replace dp by p and always
consider the latter as the excess pressure.

From the above we conclude that #, p and s are in phase with

one another; that is, when the particle velocity is positive, the

excess pressure and condensation are likewise positive. That this

is not true of the particle displacement, f, may be seen from the

following. We have from (1-20)

= u = kA sin k(ct #), (1-24)

whence, since we omit any value of independent of the time,

= -- cos k(ct x) = -- sin k ( ct x + ~
J (1-25)

Equation (1-25) thus shows that the displacement is 7r/2 or 90
in phase ahead of the velocity, condensation and pressure. Inci-

dentally, by differentiating with respect to x and comparing with

(1-22), we note that

This important relation will be of use later. Physically it means that

if increases in the positive x direction we get a rarefaction (i.e., j is

negative); while decreasing in the positive x direction corresponds
to a condensation. It should be noted that if is measured always
in the direction of propagation, as we shall later find it desirable to

do (see Sec. 1-17), then for a wave in the negative x direction eq.

(1-26) will become s = + d/d#; i.e., we shall use the minus or plus

sign according as we are referring to propagation in the positive or

negative x direction.

Since any function of (ct #), say f(ct x), obeys the wave

equation, i.e.,

/-
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it follows that not only does <p satisfy eq. (1-17) but that we may
substitute for <p therein , u y p, s, as we choose (recalling that here

p means excess pressure). Fiom the fact that F(x + cf) is a solution

of the wave equation, it also follows that all the preceding results

of this section hold likewise for a wave progressing in the negative
x direction, and hence for the sum of any number of waves in the

positive and negative directions, assuming that the displacement
and particle velocity are measured in the same direction for all.

We have already mentioned the change in sign introduced into

eq. (1-26) by the measurement of positive in the direction of

propagation. This will occur only in equations containing dis-

placement and particle velocity.

We have seen that the general expression for the velocity of

a wave in a fluid is c = ^p/dp. In texts on heat it is shown that

if in a gas we assume isothermal change, we have dp/dp = p/p
(i.e., Boyle's law holds), whence

c =

But if the change is adiabatic (and this is indeed the case for the

rapid expansions and contractions accompanying the progress of a

sound wave in a gas), then dpidp = yp/p, where 7 = ratio of

specific heat at constant pressure to specific heat at constant vol-

ume. For this case then,

< = V P
("a8 >

In the case of a liquid we must introduce the elasticity. Thus if

we call &V the change in volume of a given mass of liquid corre-

sponding to a change in pressure A/>, then the ratio

is found to be practically a constant if A/> is not large. This con-

stant is called the "volume elasticity" or "bulk modulus," and is

here denoted by E. From the definition of density we may write

AF/F= Ap/p, or in the limit dV/V = dp/p, whence since

VdpjdV = -
, we have

dp E , .=- "2
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from which there results for the velocity of the compressional wave in

the liquid

e =^ (1-30)

Although the discussion in this section refers particularly to plane

waves, it should be emphasized that eqs. (1*28) and (1-30) are true

for any type of compressional wave whatever (i.e., spherical or

cylindrical) since their derivations have in no wise limited the

meaning of c y
which has already been shown to be general.

1-14. Spherical Waves. Returning to our general equation

(1-16),

IP
=

let us assume spherical symmetry about a point. That is, <p will

be assumed to depend only on / and the distance r from this point,
which may be conceived as a point source of sound and made for

convenience the pole of polar coordinates r, 6 and ^. The dis-

turbance in such a case is propagated as a spherical wave. In

polar coordinates it may be shown 1 that vV takes the form:

where x = r sin 6 cos \f/; y = r sin 6 sin ^; z = r cos 0. In the case

of symmetry assumed, the above expression reduces to

d2
<p 2 dip

V"* == W +
~rdr>

or

Therefore the general wave equation (1-16) becomes

d-33)

From the solution of eq. (1-17) for the case of plane waves it follows

that the solution of (1-33) for the case of spherical waves is

or

r
" -

r) + F(ct + r)]. (i -34)

1
See, for example, Houstoun, Introduction to Mathematical Physics, p. 21.



SOME PROPERTIES OF ACOUSTIC WAVES 29

In this expression (i/r)f(ct r) represents a wave expanding or

diverging from the point source, while (i/r)F(ct + r) represents a

contracting wave converging to the point. The velocity of each

of these waves is c = ^dp/dp as before. We can readily find the

expressions for s
y and p (the excess pressure) for a spherical wave

if that for <p is known. It might be emphasized here that the

great importance of the velocity potential in acoustics is that all

the important quantities may be conveniently obtained as soon as

one has the velocity potential. Thus from our previous work

((1*15) etc.) we have established the relations:

*.

p ^C*poS

To develop useful expressions for these quantities we must assume

a particular type of wave. As before we shall postulate a harmonic

wave and for convenience shall employ the complex notation. 1

Thus

* = 7^ (c'- r)
> (i-35)

where A denotes the constant amplitude factor. From this:

(1-36)

Since

'*) 7
'lt<c"r)

' ("37)
it follows that

.

("38)
of which the real part is

= - [ cos k(ct
-

r) + ^sin k(ct
-

r) 1 ~

wherein

1

See, for example, Lamb: Dynamical Theory of Sound, id ed., p. 53.
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Since p =
c*pos, we have

of which the real part is

p = PO
- sin k(ct r). (1*42)

From eqs. (1*39) and (1-42) we see that p and $ are no longer
different in phase by 90 as in the case of plane waves. The addi-

tional phase difference 6 increases with the wave length for constant

r and decreases with r for constant X. However, p and s are in

phase as before.

These last three sections have presented the derivation of the

general equations which will be used constantly in the text that

follows. Those most commonly met are (1-13), (1*14), (1-15)5

(1-16) and (i'26). In the cases of plane and spherical waves, the

equations give the relations, both in magnitude and phase, of the

various physical quantities such as pressure and particle velocity.

These will be repeatedly used in the chapters that follow. Cylin-
drical waves are omitted from consideration because in practice

they can usually be treated as plane and also because the theory
would be burdened by non-useful complications if they were in-

serted.

1-15. Energy Content of an Acoustic Wave. Intensity. If we

denote the excess pressure by/>, from Section 1-13 we have the rela-

tion p = poA, where p is the mean equilibrium density, c the velocity
of sound and s the condensation. It is now desired to find the

kinetic and potential energies associated with the wave. The

former, by definition, is given by

K.E. = \Pofff?dV, (i-43)

where the integration is taken over the whole volume of the fluid

being considered. To get the potential energy per unit volume

consider a small element of volume A/7. Under excess pressure p,
this contracts to A^(i ds) for a change in the condensation dsy

if terms of the order of A^-rfj2 and kV-sds and higher are neglected.
An amount of work is then done equivalent to p*&V*ds. Conse-

quently the work done on the element while the condensation
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varies from o to s is given by:

f
'

p&Vds = W f p^sds = AJW2A
t/0 /0

which reduces to %p Qc
2
s
2
per unit volume. Hence the total potential

energy is

P.E. = Mffffdr. (1-44)

Now in the case of a plane progressive wave where we have,

for example,
=

f(ct
-

#), it follows that f
=

cf(ct
-

x) while

d/d,v == f(ct #)> where the primes indicate differentiation with

respect to the whole argument of the function. But from Section

1-13 we also recall (eq. (i'26)) df/dv = s. It therefore follows

that for a plane wave

| = u = cs. (i-45)

Comparison of (1-43) and (1-44) in this case shows that for plane

waves the energy content is half potential and half kinetic. We
must take care to note that this is not a general condition. For

example, it is not true of a diverging spherical wave, except at great

distances from the source.

The intensity of a sound wave (in the case of plane and spherical

waves, which are the ones we shall deal with exclusively) is defined

as the average rate of flow of energy per unit area normal to the

direction of propagation. It is thus the power transmission per

unit area, and for a plane wave is obviously the same as the average

energy content per unit volume (i.e., energy density) multiplied

by the velocity of sound. For a plane harmonic wave where

= A cos k(ct #)> we have 2 = A?&<? sin2 k(ct
-

#), whence

from the previous paragraph the average energy density is

nX
'

sin2
k(ct

-
x)dx

, (1-46)
r..

where X is the wave length and n any integer. Carrying through

the integration there results

wherein we note that the result is, as it should be, independent

of /. Now we have from the above for the maximum particle
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velocity ?max = Akc> whence there follows from (1-45) Ak = s m3L*.

Therefore we get an alternative form for the average energy density

in terms of the maximum condensation, viz.

W = JpoA^ma*. (i'48 )

A still more common form for W is in terms of the maximum excess

pressure, viz., pm&x = p<>c
2smaK . Thus, substituting, there results

whence the intensity becomes

/-**= 0-50)

Now it can be shown (using eq. (1-23) in Sec. 1-13) that (1-50) is

also the time average value of the expression p
2
/poc. If a procedure

somewhat similar to the above is applied to spherical waves, the

same expression is found for the intensity.
1 It is thus generally

customary to think of intensity as always proportional to the mean

square of the excess pressure, and as such the term is a very val-

uable one with reference to acoustic instruments, most of which

are operated by pressure (e.g., diaphragms and the like). It is

important to note that when the intensity is expressed in the above

form the frequency is not involved.

Recently there has come into extensive use a logarithmic unit

for denoting difference in levels of sound intensity.
2 Thus if /i

and /o are two different intensities being compared, we may say

that the two differ by a "bels" where

a = logio/i//o.

A unit of more convenient size in telephone engineering is the

"decibel" (db) which is one-tenth of a bel. We shall have occasion

to refer to this unit in connection with the acoustics of audition

(Sec. 97).
1-16. Variation of Energy Content with Frequency and Ampli-

tude. In the case of plane waves it was shown in Section 1-13 that

for a displacement given by = d/c-cos k(ct x) the corre-

sponding excess pressure is p = kptfA sin k(ct x}. Since k

1 See problem 18 of this chapter and Sec. 3-2 of Chap. III.

2
See, for example, Fletcher, Speech and Hearing, 1928, p. 69.
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=
2?r/X, it follows that p = 27rp ^/X-sin k(ct #). Hence the

excess pressure has a maximum value which varies directly as the

displacement amplitude and inversely as the wave length or directly

as the frequency of the wave. It therefore follows from the pre-

ceding section that the potential energy of a plane wave is directly

proportional to the square of the product of the displacement

amplitude and frequency. The intensity of the resultant of two

plane waves of the same frequency is proportional to the square

of the product of the resultant displacement amplitude and the

frequency.

1-17. Phase of a Wave. Influence of Reflection on Phase.

It will be found convenient to make some convention with regard

to the relation between the direction of positive displacement in

a wave and the direction of propagation. In this text it will be

assumed that the particle displacement is positive if in the direction

of propagation and negative if in the reverse direction. We have

now to consider the important matter of the phase of a wave. For

this purpose let us consider a plane harmonic wave with displace-

ment written in complex form, viz.

= Ae l^ l~kx) = ^/[cos (w/ kx) + i sin (co/ &*)],

where k = w/r, as usual. The student should at this point famil-

iarize himself with the complex notation (see note on Sec. 1-14)?

since it is of great value in the more complicated developments of

the subject. When written in the above form, the quantity co/ kx

is called the "phase" of the displacement, provided the amplitude
A is real. If the amplitude is complex it can always be written

in the form A = A&*> where A* is real and the displacement takes

the form

and the phase is now co/ kx + . The quantity e is sometimes

called the initial phase. If we have two plane harmonic waves of

the same frequency progressing in the same direction with the same

velocity, they will clearly be of the same phase if

co/ kx + 61 = co/ kx + e2,

or 1
= e2 . They will then have at any point maximum displace-

ments at the same time. With regard to waves traveling in oppo-

site directions the situation is more complicated. Nevertheless we
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can say that at any given point two such waves are in the same

phase if they attain their maximum displacements there at the same

time, these displacements being measured, of course, in opposite

directions, in accordance with our initial convention.

Let us then consider the effect on the phase of the reflection

of sound at the boundary between two fluid media. We shall here

assume normal incidence, for simplicity. The incident wave (from

left to right) may have its displacement denoted by

fa= &'"-**>. (1-51)

The reflected wave displacement after the establishment of a

"steady state'* is

{ r
= $,*'<"*+>, (I-52)

where the amplitudes and 1 are real and positive. Now suppose
that at the boundary the resultant displacement is always zero,

corresponding to the transition to an infinitely dense medium which

acts like a rigid wall. Then we have, recalling that r is measured

to the left,

*,
-

*r
=

o, (i-53)
which leads to

o
=

$i<?'
-

, (i'S4)

if the boundary is taken at x = o. Separating the real and imag-

inary parts, the above equation yields

fisine = o, (i'55<*)

o
=

1 cose. (

From (i'55#) we infer that e = nw where n is any integer;

effectively we are here concerned only with ;; = o or I. For e = o

we have, from (1-55^),

fo= 1, (i'56 )

while for e = TT we should have

But this is inconsistent with eq. (1-53) and the fact that o and 1

are real and positive. Hence eq. (1-560) alone applies here, pro-

ducing zero displacement at x = o at all times. The reflection

occurs, then, with e = o or without change in phase.
Next consider the situation in which sound passes from a dense

medium into an infinitely rare medium. The second medium will
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not support pressure changes. Hence at the boundary the resultant

excess pressure or condensation will be always zero. Now st

= d% t/dx and s r
= + d% r/dx

1 and hence at x = o

Proceeding as above this yields

fo + &** = o, (1-58)

leading again to = o or IT. But here = o gives o
=

1,

while e = TT gives o
=

1. Hence we now say that the reflection

takes place with a phase change of TT.

A somewhat simpler view of the preceding may be obtained if

we use complex amplitudes
2 and omit the introduction of the phase

into the exponent. Thus let the incident and reflected displace-
ments now be denoted by

& =
o' + /o'> i("'-taf)

, (1-59)

fr= (*/ + *VV (<"+te)
, (I'60)

where
o' + /V =

to and fc' + ifc" = fc.

Then if the displacement at x = o is always zero we have

whence f
' =

/> to" = ti
7/

immediately, indicating that the reflec-

tion takes place without change of phase. We can also look at it

in this wise. The ratio of two complex numbers such as 1 and |o

is a complex number which can always be written in the form

I
1 = A*P, (1-62)

fo

where AQ is real and positive and equal to |i|/|o| and denotes

the difference in phase of 1 and . Now if 1
= we have A$e*

= i or A* cos c = i and A sin c = o. Then A* = i and = o

corresponding to the case just discussed, i.e., reflection without

1 See Section 1-13, eq. (1-26), and accompanying discussion.

2 We shall find the use of complex amplitudes very convenient in further work on

transmission problems (see Chap. III).
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change in phase. In the second case in which the excess pressure

at the boundary (#
= o) is zero, we have 1

=
o> whence A$e lt

= i leading to A = I and e = TT, corresponding to reflection

with phase change of TT.

The treatment of this section is idealized in the assumption of

infinitely dense and infinitely rare media. We now find it necessary

to treat the general case of normal reflection at the boundary of

any two fluid media.

1-18. Normal Reflection at Boundaries in Gaseous Media.

The boundary conditions that must be satisfied here are that the

particle velocities normal to the interface and the excess pressures

on the two sides are equal in each case. Following the notation

of Section 1-17, let the displacements in the incident, reflected and

transmitted waves after the establishment of a steady state be,

respectively,

where k\ = co/ci, k* = w/<r2 , while c i is the velocity of sound in the

first medium, c<i is the velocity of sound in the second medium,

and o, 1 and & are complex quantities whose relations of magni-

tude and phase we desire to investigate. Let the equilibrium

densities of the two media be p i and p 2 respectively. If the

boundary is taken at x = o, the conditions become

fc- fr= &,at* = o (1-630)

i + Sr)
= pwtfst, at x = o, (

where J s r and s t are respectively the incident, reflected and trans-

mitted condensations, and we recall that r is measured in the

negative x direction, i.e., the direction in which the reflected wave

moves. Performing the indicated differentiations and substitu-

tions (recalling that jt
- = d&/dx, while s r

= + d r/d#), the

equations (1-630) anc* ( l '^) finally reduce to

{o
-

1
=

On eliminating 2 between these two there results for the ratio of
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the reflected and incident complex displacement amplitudes at the

boundary -
(I

.6 j

It is worthy of note that (1*64) is a general equation holding for

fluids in general. It may be specialized to apply to gases only by
the substitution c\ = ^"Yip/poi, etc. Then (1-64) becomes

V72P02 + \7iPoi

If, as is often the case, 71 = 72 approximately, (1-65) reduces to

the simpler and more common form

po2 po c * + ^

The equation (1*64) yields the phase relationship as well as the

amplitude ratio. For setting

as in the preceding section, so that e is the phase difference between

j and 0) we see that

whence

-r

and AQ sin e = o, so that = o if p 2^2 > POI^I, while e = TT if

< Port i. In each case

This analysis makes clear the interesting fact that the change of

phase on normal reflection of a compressional wave in either a

liquid or a gas is always either zero or TT. It will be shown later

(Sec. 4-5) that this statement is also true for the normal reflection

of a compressional wave at the interface of a fluid and a solid and
of two solicHi
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Let us consider two illustrations. Saturated air at 20 C is

lighter than dry air at this temperature by about one part in 120.

Consequently the reflected amplitude is only about 1/480 part of

the incident. Since, as has been shown in Section 1-15, the inten-

sity is proportional to the square of the amplitude, it follows that

when sound is incident from dry air on saturated air or the reverse,

the reflected intensity is only 1/230,000 part of the incident inten-

sity. To take another example, for dry air at 100 C, 7 = 1.41

and c = 386 meters/sec; while for steam at 100 C the same quan-
tities are 1.33 and 405 meters/sec respectively; consequently the

amplitude ratio in this case is (using eq. (1*65)) .054 and the in-

tensity ratio .0029.

As might also be expected, computation shows that if the differ-

ence between the two media is one of temperature merely, the

reflection is very slight.

1*19. Influence of Surroundings on the Energy Emitted by a

Vibrator. A point sinusoidal source of sound is said to be a
"
con-

stant" source if, the frequency remaining constant, it causes the

injection and removal of the same amount of the surrounding
medium. A telephone diaphragm when continuously excited may
be looked upon as an example of an approximately constant source.

Now suppose such a source to be placed at O, very near and to

the right of an infinite wall (see again Fig. i-i). In the hemisphere
to the right of the source there will be not only the direct sound

from but also the sound reflected from the wall, equivalent, as

we have seen in Section 1-2, to the sound from the image 0'. From
the discussion on the effect of reflection on phase we further note

that both and 0' are in this case sources in the same phase, and

since they are separated by a distance small in comparison with the

wave length, in the hemisphere to the right of the displacement

produced will be approximately twice that found in the case of

alone, without the wall. In other words, since the intensity or

energy flow per unit area varies as the square of the displacement

amplitude, there are now the equivalent of two equal sources radi-

ating, in the hemisphere to the right of 0, four times the energy of

one source alone in the same hemisphere. Moreover the one source

alone radiates in two hemispheres, while the two sources, resulting

from the action of the wall on the single source, radiate in but one

hemisphere. Therefore the total energy radiated in the latter case

is twice that in the former.
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Precisely the opposite effect is produced when the source is in

a dense medium and the wall is replaced by the boundary between

this and a much rarer medium. The reason is that the source and

image are now opposite in phase and if they are very near together

very much less sound energy will be radiated into the hemisphere
to the right of than if there were no boundary. In both cases

the effect obviously depends on the distance of the source from the

boundary, being less the greater this distance. As will be empha-
sized in Chapter X, the facts brought out in this paragraph are of

great importance in submarine signalling.

This section will serve to emphasize the very important fact

that the environment of a source of sound is often very influential

in modifying the "load" or energy output of the source.

i -20. Sound Waves of Finite Amplitude. In Section 1-12 we
have derived the wave equation for sound waves. Certain approxi-
mations were adopted which made the equation relatively simple
and ultimately led to the conclusion that the velocity of a sound

wave is constant and equal to ^dp/dp. That this is not true for

sound waves of large amplitude is therefore not surprising. Veloci-

ties far in excess of this, the "normal" value, have been obtained

in explosive waves. That the velocity should vary with the amount
of displacement or particle velocity of the medium is to be antici-

pated. For, consider the case of a wave so long that the variations

in velocity and density along it are not noticeable for a considerable

distance. At a given point the particle velocity of the medium is

u and the neighboring particles have sensibly the same velocity.

Consider a small secondary wave to be superimposed. Let its

propagation velocity be c in a medium at rest. This velocity
at the point of the medium having the velocity u will therefore be

c + u. Moreover this velocity will depend upon the position along
this primary wave that we are considering. If this be true, the

velocity of our secondary wave is variable, depending upon the

velocity or density of the medium. The force of these remarks

would apply equally well to the original wave itself. One might
therefore expect that, with waves involving large medium velocities

or densities, the velocity of propagation would not be the same
for all parts of the wave. This leads to an intricate situation into

which we do not wish to enter. For the sake of brevity, we will

merely state that abnormal velocities of sound waves have been

repeatedly measured. Careful studies of the physical conditions



40 ACOUSTICS

in such waves have not been made. The nose wave of a fast moving
bullet must travel faster than the normal velocity of sound. Lord

Rayleigh discussed this in Proc. Roy. Soc. A, 84, p. 247 (1910),

offering an explanation as to how it could retain its form. For a

discussion of this and other aspects of sound waves of finite ampli-

tude, reference should be made to the original paper. In part,

however, he assumes that the forepart of the wave in front of the

projectile maintains its permanent regime (" shape") under the

influence of viscosity and heat conduction.

QUESTIONS AND PROBLEMS

1. Given a line source of sound in the vicinity of an infinite

wall, discuss the influence of the wall on the source on the basis

of the treatment in Section 1-2. Is there anything peculiar about

this case when the length of the line is not small compared with the

wave length? Explain.
2. Consider a source placed between two parallel walls. Locate

the images. Judging from your experience, would an observer be

able to recognize these images as distinct?

3. What would be the value of a horizontal (or almost hori-

zontal) large reflector over an open air speaker's stand? At about

what elevation above the speaker should this reflector be placed
and why?

4. What difficulties will be encountered in the production of

sound shadows in water as compared with the problem of "screen-

ing" in air?

5. Using the construction indicated in Fig. 1-4, calculate the

diameter of the circular disc that will produce the first maximum
effect at a distance of one meter from C on the axis, if the frequency
is 500 cycles/sec. Find also the diameters for the first minimum
and second maximum respectively.

6. Referring again to Fig. 1-4, suppose that a constant source

of sound is located at 0. Calculate the diameter of the circular

screen CD which will give the first maximum intensity at C, if

CO = one meter, and the frequency is 500 cycles/sec.

7. In Section 1-4 the pinnae were mentioned as an illustration

of the effect of selective reflection. Is this the only factor which

enters? Discuss this in connection with the watch experiment
alluded to in the same section.
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8. Give a physical reason for the necessity of reflection at a

change in area of a conduit.

9. Deduce the equations of motion of a perfect fluid used in

Section 1-12. That is, show that

du
,

du
,

du . du I dp+ u--+v- + w = --
-/- , etc.

dt dx dy dz p dx

10. Show by direct substitution that <p f(ct x) + F(ct + x)

is a solution of the wave equation. In particular, prove that

F(ct + x} represents a wave progressing in the negative x direction.

11. Verify eq. (1-50) by proving directly that p
2 =

i/>
2
mnx, where

the bar indicates the time average.
12. Prove that when a plane wave of sound is reflected normally

in passing from a rare to a dense medium the condensation and excess

pressure are reflected without change in phase. Prove that when
the passage is from dense to rare the condensation and excess

pressure are reflected with change in phase of TT.

13. Calculate the percentage of sound energy reflected normally
in going from air to water.

14. If the observer were moving with the medium (either of

two) and the wave is incident at the boundary, what could be

said about the perpendicularity of the wave direction and wave
front?

15. Stipulate the conditions and sketch the path of sound in a

case where it is not reversible, as stated in Section 1-7.

16. Give the details of the solution of eq. (1-17).

17. The solution of eq. (1-17) may be written in any one of

three ways:

<P
= (A' cos kx + B' sin

Show that the last two are special cases of the first for simple har-

monic waves of one frequency. Discuss the evidence in them for

two waves and the differences in significance of A and A* .

1 8. Starting with the expressions for the kinetic and potential

energies as given in eqs. (1-43) and (1-44), apply the fundamental

equations of this chapter to show that the time rate of change of

the total acoustic energy in a given volume may be expressed in
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the form

where d<p/dn is the gradient of $ normal to the surface S bounding
the volume, and the integration is to be taken over this surface.

Apply this result to plane and spherical waves to deduce the equiva-
lent of eq. (1*50) and eq. (3-24) of Chapter III.



CHAPTER II

COMBINATION OF ACOUSTIC ELEMENTS

2-1. Acoustic Elements. The reader is presumably familiar

with the use of the term "element" to denote the characteristic

components of an electric circuit, i.e., the resistance, inductance

and capacitance. Mathematically these elements are merely co-

efficients in the differential equation connecting electromotive force

with current at any instant, but physically we may look upon each

of them as defining a distinct and particular activity or behavior

of the circuit or part thereof. Thus in a pure resistance electrical

energy is dissipated in the form of heat; in a pure inductance the

energy is stored in the medium, etc. This treatment of a physical

problem in terms of its "elements" is often of great value and will

be found in every dynamical theory of physical phenomena. For

example, in the next section we shall see that the fundamental

elements of a vibrating mechanical system are its inertia, stiffness

and mechanical resistance. We should expect that the study of

acoustics will be facilitated by the introduction of acoustic elements

characterizing the action of each component of an acoustic system.
Thus we shall see the acoustic analogues of inertia, stiffness and

resistance in the characteristic manner in which the acoustic medium
behaves for different sources of sound and differing ways of con-

fining the medium. Indeed every acoustical instrument or system

may be looked upon as a combination of acoustic elements. It is

the purpose of the present chapter to give an introduction to this

important point of view in acoustics.

2-2. Mechanical Oscillations and Resonance. The vibrations

of a thin metal diaphragm will first be considered. Let the effective

mass l of the diaphragm be m and its area S and let it be acted on

1 It should be noted that the effective mass of the diaphragm is equal to its actual

mass only if all parts of the diaphragm are equally free to vibrate. This is, in effect,

the ideal case discussed in this section, which is thus immediately applicable to the

oscillations of any mechanical system of one degree of freedom characterized by the

appropriate m,f and KI. The more detailed discussion of the vibrations of a circular

diaphragm which is clamped on the periphery is given in Section 8-8. It will there

be found that it is possible to replace the vibrations of the diaphragm by those of an

equivalent piston with mass and stiffness definitely related to the actual mass and

size of the diaphragm.

43
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by an excess pressure p. If we denote the displacement by ,
and

suppose that the elastic restoring force is proportional to ,
and

that there is further a dissipative force proportional to the dis-

placement velocity, the equation of motion becomes

ml + A'i{ +/ =
4S>, (2-1)

wherein KI is the damping (or dissipation) coefficient and/ is the

stiffness coefficient. Ifp and are assumed to be simple harmonic

in time with frequency v u/2ir, then the steady state solution

for the resulting oscillation is found by substituting
= ^e'

Mt and

p =
p\e

wi into (2-1). Here 1 and p\ arc, in general, complex and

are not functions of /. The result is

__ _
/A> + (/- ;//co

2
)'

or for the more important quantity, the displacement velocity

Rationalizing the denominator we have

Spe~
lot

* =
[*, + (;-//);]''*'

(2
'

4)

where tan a = (wo)
2

/)/A'io? and a is the phase angle^ indicating
how the velocity lags behind the force. If now we substitute in

(2-4) p =
pie

iwt and retain only the real part, we get the equivalent

trigonometric equation:

t tyi cos ("*
-

) /-xWl ^^ + (;;/w y/w)2]l/2

' ^ 5;

The ratio of the force and the velocity both considered as com-

plex quantities will now be defined as the mechanical impedance
and denoted by Z. That is, from (2-3),

Z = Ki + i(mu -//). (2-6)

Separating this into its real and imaginary parts, we have

Z = Zi + /Z2, (27)

where Zi = KI and is called the mechanical resistance^ and Z2
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= mu //, the mechanical reactance. At the present time no

suitable single name has been adopted for either of these quantities.

From eq. (2-5) it is clear that the maximum value of occurs

for a frequency given by

and in this case the mass is analogous to the self-inductance of an

oscillating circuit and the stiffness coefficient is analogous to the

reciprocal of the capacitance. It is evident that the maximum
value of 2 and hence of the kinetic energy of vibration also occurs

at the above so-called resonance frequency. This is not true,

however, for the displacement. Consulting (2-2) it is seen that

the displacement has its maximum for the value of co which makes

KW + (mrf -/)
2

a minimum. This value is

2m2

If the effective mass is great and the dissipation or mechanical

resistance relatively small, the frequency defined in (2-9) closely

approximates the resonance frequency (2-8) . The latter may also

be called the free oscillation frequency of the system, for it repre-

sents the frequency with which the diaphragm would vibrate if

disturbed from its equilibrium position and allowed to oscillate

freely (assuming no dissipation). It can be shown that if dis-

sipation be taken into account the free oscillation frequency
1

is

I /ITT V//0*
- KJfam*.

The phase a presents considerable interest. From the relation

tan a = (ma? /)/coA\, it is seen that if mw2 f > o, T/2 > a > o;

while if wco2 / < o, IT > a > TT/Z. When co = V/A, a = o and

the velocity is in phase with the applied force. On the other hand,

when KI = o, i.e., vanishingly small resistance, a = ?r/2. In the

latter case the displacement will be found to be either exactly in

phase or out by a whole half-period.

The rate of energy dissipation is KI&, whence the application

of (2-5), together with the expression tan a = (mvP f)/Ki&> yields

1 See Problem 2 at the end of this chapter.
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for the time average of this quantity:

7 --
1
^.-=
- SW cos2 a

Jr =
energy dissipation rate = - ~-

(2-10)

It is of interest to notice that when the velocity is in phase with

the force (i.e., a. o), there results maximum energy dissipation.

The reader will recall that in pushing a swing to get the greatest

effect the pushes should be timed so that the force is a maximum
when the velocity is a maximum and the displacement a minimum,

i.e., as close to zero as possible. Naturally, the average rate of

transfer of energy to the vibrating system by the external force is

always equal to the average rate of dissipation.

The important influence that the dissipation or damping factor

exercises on the resonance may be seen as follows. Denoting the

resonance value of co by co
, we have, from (2'io),

rr ~ is r is 9 9 i 9/9 2\2T y

2Ai|_Ai^co
2 + ;7r(co

z
a?o ; J

which reduces to

, ,

( }

where x = w/co WQ/W. Then the maximum value of W occurs

for x = o, i.e., the resonance case.

Now we have

}Vdx (AY + ;;;W*2
)
2

For x > o (i.e., a? > co ), the derivative is negative, whence as x

increases the value of W falls off at a rate which is greater the

smaller the value of A"i (other things being equal) and vice versa.

But for the resonance case itself (x = o) W varies inversely as K\.

We may summarize the results (which are presented graphically
in the following qualitative diagram, Fig. 2-1) thus: for small

dissipation or damping the resonance is sharp and the peak is high;

for large damping the resonance is diffuse and the resonance W
is lower. The effect is well known in both acoustic vibrations and

electric oscillations.

In most texts on acoustics it is customary at this point to

investigate in detail the mechanical vibrations of strings and bars.
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And indeed the vibrating string itself furnishes a satisfactory intro-

duction to the theory of vibrating systems. It will suffice here

to refer to the many excellent treatments of this topic in the stand-

ard texts.1 The attention of the reader is directed, however, to

the problems at the end of Chapter II.

FIG. 2-1.

2-3. Helmholtz Resonator and Acoustic Impedance. The Helm-

hoitz resonator is an enclosure communicating with the external

medium through an opening of small area (see Fig. 2-2). The open-

ing may be flat, as in the figure, or it

may be in the form of a neck. In either

case it is a simple matter to separate
the resonance elements. Inside the reso-

nator there is a volume of gas of magni-
tude V which is alternatefy compressed
and expanded by the movement of the

gas in the opening. It thus provides, so

to speak, the stiffness element of the sys-

tem. The gas in the opening moves as

a whole and provides the mass or inertia

element. At the opening, moreover,
there is a radiation of sound into the surrounding medium leading
to the dissipation of acoustic energy and providing the dissipation

1
Rayleigh, Theory of Sound, Vol. I, Chap. VI; Lamb, Dynamical Theory of

Sound, 1925, p. 59, 108; Crandall, Vibrating Systems and Sound, 1926, p. 64, 77.

FIG. 2-2.



48 ACOUSTICS

element. To write down the equation of motion of the gas in the

resonator we must estimate the magnitudes of the above elements.

If the opening has a neck of length / small in comparison with

the wave length, with a cross sectional area <9, the mass of gas in

the opening is poSl. It is customary and convenient to write this

in another form by introducing the quantity

cQ
=

S/l, (2-13)

which is called the acoustic conductivity of the opening. A more

thorough discussion of the conductivity will be given in Section 2-4.

For the present we merely substitute it into the mass expression,
whence the latter becomes po

2
Ao- It is to be noted that this rep-

resentation is possible whether the opening is in the form of a neck

or is flat.

To get the expression for the dissipative force we need to cal-

culate the amount of acoustical energy radiated from a hemi-

spherical source of sound in a fluid. We shall give a rigorous
derivation of this quantity in a later section (Sec. 3'2). It will

suffice here to note that the final result for the dissipative force is

2

Tir *'

where k = STT/X as usual. The reader should note the dependence
on the velocity.

Finally, we must compute the stiffness coefficient. For this it

is necessary to calculate the force acting on the area S of the open-

ing. If the volume V of the resonator is decreased adiabatically

by the amount dV^ the excess pressure is (see eq. (1-14))

*

-y ,

for by definition, since the mass is constant, d(Vp) o and

.PO

Now dV S%,
if the displacement producing the volume change

is . Therefore the force acting on area S is
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We are now ready to write the equation of motion. Putting
S = X and supposing that the resonator is driven by an external

force producing a pressure />,
we have

p <r
2

v f A-,-A=p. (2-14)

Mathematically, if p is a harmonic function of the time, (2-14) is

precisely similar to (2'i). For the steady state its solution there-

fore is

= ~~ "

. / pQCO __ po^ \
'

l

\ C V I27T \ CQ

the real part of which written in trigonometric form becomes

where, as usual,

2
o , v

tan a =-^^-'-
(2-17)

The maximum value of ^f occurs approximately when w/^o = f
2
//

r

co,

that is, the approximate resonance value of.co is

The more accurate expression for the resonance frequency is

- c
^\y

but the term k^cf/^ir is usually negligible, for ro < < X, as a rule.

These theoretical conclusions are confirmed by experiments on

resonators.

We now define acoustic impedance analogously to the mechanical

impedance of the preceding section.



50 ACOUSTICS

Thus, we write

7 __ pressure _ pressure
rate of volume displacement volume current

"
J:

= Zl + iZ2y

where

Zi = acoustic resistance = = ~
> (2*19)

27T 27T
V J/

and

Z2 = acoustic reactance = PO ( r> 1 (2-20)
Vo e**V

It is customary to call the quantity po/Vo the inertance, while the

quantity F/pof
2

is the acoustic capacitance. It is thus usual to

write for the reactance Mco i/coC with M = poAo and C = F/poc
2

.

The latter is seen from eq. (2*14) to be the ratio of the volume

displacement to the pressure for the case of static displacement.
With regard to the former, it should be noted that the inertance

is not the mass of the system. Rather we have the relation

mass
inertance = ^

As might be expected from the previous section the maximum
X and the maximum pressure (or displacement) do not occur at

quite the same frequency. The resonance frequency is, of course,

given to a close approximation by (2-18), while the maximum dis-

placement occurs for the value of co which makes

co
4*2 /s_!V
47T

2 ^
V C Q V)

a minimum. This comes out to be

i= 'A/7?' ..
' C2

'21 )

This is but slightly less than co
, as a rule.

The amplification constant of the resonator is the ratio of the

squares of the maximum excess pressure in the resonator and the
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maximum external operating pressure. For the former we have at

once the expression,

^ __ A f

/>max PQC Jmax ~ -T?
-

>

while the latter is simply pi. Now we have

Hence after some reduction we arrive at

p2
Amplification

=

which for the resonance case reduces simply to

2-4. Conductivity of an Orifice. In Section 2-3 there was intro-

duced the quantity c^ which was called the acoustic conductivity
of the opening into the resonator. This is an extremely important

concept and will now be further examined. In the case of an

opening in the form of a channel of length / it is possible, of course,

to write down an approximate expression for the mass of the body
of air that moves as a whole. The vibrations of this mass con-

stitute one of the chief features of a resonator. But, as will later

appear, the mass in the channel is not the entire effective mass

of vibrating air and hence another quantity must be introduced on

which the latter can be considered to depend. This quantity is the

conductivity. Following Rayleigh
l we write for the kinetic energy

of a mass of fluid:

(2-23)

in the vector notation, where the integration is extended over the

whole region occupied by the fluid whose motion has a sensible

1
Rayleigh, Theory of Sound, Vol. II, Sec. 304.
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value. By Green's theorem l this volume integral can be trans-

formed into a surface integral over a surface including this whole

volume. This theorem states that *

fffKVv? + v^v~\dxdydz
= /yVn-V^W, (2-24)

where n- V<f> is the component of V<P normal to the surface element

dS. We can write n- VY = d<p/dn. Now the mass of fluid is

supposed to move as a whole and hence s is approximately zero

(where s is the condensation: see Sec. 1-12). Therefore in the

moving fluid vV is zero. The expression for the kinetic energy
then reduces to

K.E. = (2-25)

Now on the surface over which the above integration is to be carried

out, there will be no appreciable motion of the fluid and <p will

therefore have a constant value.

But it will obviously be different

on the two sides of the orifice.

Call the value on the inner side

<pi and that on the outer side <p%.

Then if the flow is from left to

right we have as the surface inte-

gral over Si and 2:

dn

= - ( *\JC ( r> r̂ f)\

since the volume current X =

ff(d<p/dri)dS by definition. To
a first approximation X should be

a linear function of <pi ^2- Hence
we assume

FIG. 2-3. X =
CO(<PI <pz). (2

' 27)

We note at once the analogy to Ohm's law in the case of electrical

currents, whereby if a uniform difference of potential EI E2 is

maintained between two points of a conductor, there flows a current

/ = C(Ei E2), where C is the reciprocal resistance or electrical

1
See, for example, E. B. Wilson, Advanced Calculus, 1912, p. 349.
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conductivity of the substance. One is therefore led to give the

name acoustic conductivity to CQ. Writing the kinetic energy in

terms of it, we obtain

K.E. = \^X\ (2-28)
CQ

whence P^/CQ appears as the effective mass of the moving fluid in

the opening.
We have already noted one application of the conductivity in

the study of the Helmholtz resonator, where the potential and

kinetic energies appear in the form:

P.E. = l*x* (2-29)

K.E. = \
P
-X*, (2-30)
CQ

and the resonance frequency is given to a close approximation by

where V is the volume of the resonator chamber.

It should at once be emphasized that the computation of CQ as

defined in (2-27) is in general difficult and has been carried through

mathematically in relatively few cases.

In the case of a simple aperture in an infinite plane wall of

infinitesimal thickness the method pursued is to assume that <p

is constant over the aperture, d<p/dn is zero over the remainder of

the plane wall and <p
= constant at infinity (so that it may be put

equal to zero). For the case of the ellipse this computation has

been carried out 1 and for the special .case in which the ellipse de-

generates into a circle we have

*o = 20, (2-32)
where a is the radius.

Now no aperture is ever in a wall of infinitesimal thickness,

and it is necessary to consider the influence of the thickness. Sup-

pose the channel is of length / and of radius of cross section a. The

conductivity of the channel alone would be simply 7n0
2
//, since the

mass of the fluid in the channel is irrfpol and the effective mass by
(2-28) is poTrVy^o- The effect of the orifice may be thought of as

1 See Rayleigh, loc. cit., Sec. 306.
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adding a conductivity in parallel (or resistance in series) with the

channel. Hence as an approximation we write for the effective

mass divided by S2
,

or
I ira?

It is seen that we may consider the term (ir/i^a as a correction to

the length of the channel. It is customary to write this in general
in the form

'-' (2>34)

where as a matter of fact a = (ir/^)a is in general too small, though
as / becomes very small in comparison with a, the assumed motion

is approximately correct and a approaches lira. It can be

shown l that the above is an inferior limit and that the superior
limit is (8/37r)#. Hence we must have the inequality expression
for the actual value of a:

Tra ^ 8#
< a < ,

4 3*

or a > .7850 and a < .849*2, and the correct value of CQ lies

between the converging limits.

The connection between conductivity and the end correction of

a cylindrical tube is further discussed from the standpoint of im-

pedance theory in Section 6-6 and it is there shown that the correc-

tion to the end can be expressed in the form S/c$, where S is the

cross sectional area of the cylinder and CQ is the conductivity of

the opening of the tube. This should make clear the difference

from (2-34), where c refers to the conductivity of the whole channel.

2-5. Electrical Analogues. The comparison of acoustical wave

problems with electrical oscillations is often very valuable, but it

must be made with caution and only with reference to the differ-

ential equation involved. The equation for the electrical oscillation

problem analogous to the Helmholtz resonator is

(2-35)

1 See Rayleigh, loc. cit., Sec. 307.
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where L is the inductance, R the resistance and C the capacitance
of the circuit in which the oscillations take place. The impressed
e.m.f. is Ee 1 and q is the charge, while the current is of course q.

The impedance is
'M *

(2>36)

The absolute value is the familiar expression

in terms of resistance and reactance. In examining the analogy with

the acoustical case it is valuable to recall that in the electrical case

we have to do with what may be called distributed impedance, while

the acoustic impedance is a point impedance.
The phase angle is given by

L-
tan =

R
u

(2-37)

The power factor, cos 6 = R/\Z\, is an important quantity in the

electrical case. Resonance occurs for the frequency for which

(2
'

38)

The influence of the resistance on the resonance illustrates the

damping effect discussed for the acoustical case in Section 2-2.

In the electrical problem, however, it is generally customary to

plot in the resonance curve the current against either the inductance

or capacitance. For large and small resistances one then obtains

curves similar in nature to Fig. 2-1 in Section 2*2.

It should be noted that the literature on modern acoustics shows

wide divergences in the definition of acoustic impedance. For

future convenience these are set down here. Kennelly and Cran-

dall * define it as-?-=-: : , in analogy with mechanical im-
particle velocity

0/

pedance. A. G. Webster 2 used ;
-

*--p i

-
, while Brillier volume displacement

1
Crandall, Theory of Vibrating Systems and Sound, 1926, p. 100.

2 A. G. Webster, Proc. Nat. Academy Sci., 5, 275, 1919; H. Brillie, Le Genie Civil,
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prefers-PI-; : . This confusion is rather unfortunate and
1

particle velocity
it might seem that the present work is adding to the confusion by

adopting still another convention for this important quantity,
, pressure pressure ~*

namely-? f-^ i

- or ~- Die pres-J rate of volume displacement volume current r

ent authors believe, however, that this last definition has proved
to be the most simple in the more recent work in acoustics and is

now being widely used in technical literature.

26. Resonance of Tubes. There are other common cases of

resonance which provide some interest. These concern motion in a

tube and are usually explained in elementary texts. It will be of

value, however, to develop here the mathematical solution for the

case of wave motion in a cylindrical tube, and then to point out

the electrical analogy. Incidentally we shall obtain the resonance

frequencies.

Let the tube be chosen with cross section S and let the distance

of any point from one end be denoted by x. Assuming the possi-

bility of motion in the x direction only and neglecting damping,
the equation of motion (Sec. 1-13, eq. (1-17)) is

wherein we use
,
the displacement, instead of <py the velocity poten-

tial. The solution in the case of a harmonic wave is, of course,

=
{ ^ t* (cl

"
a!) + j<?

1*
<+*>, (2-40)

where k = u/c as usual and the two terms refer to waves going
in the forward and backward directions through the tube, respec-

tively. Now if the tube is open at both ends there will be (approxi-

mately at least) no change in pressure at the two ends. 1 From

(1-14) and (1-26) it is seen that this condition means that d/6\v = o

at the two ends, for x = o and x = /, if the length of the tube is /.

Applying this condition to (2*40), it is found that we must have

sin kl = o, whence / = #X/2, where n is any integer. The resonance

wave lengths are thus given by X = il/n. On the other hand, if

one end of the tube is closed, say at x = o, and the other open, we
must have = o at x o, while d/dx = o at x = /. This leads

1 This assumption neglects the acoustic radiation at the openings, and hence the

result will be approximate only. The magnitude of the error is estimated in Sec. 5-5.
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to the result that in this case / = (2n + i)X/4, n being as before

any integer, and the resonance wave lengths are X = ^l/(in + J )

Similarly it can be shown that for a tube closed at both ends X
= 2//# as in the first case above. In the case of forced oscilla-

tions of a cylindrical tube it is of interest to note that the condi-

tion for resonance, if a prescribed harmonic source be maintained

at one end, is X = il/n if the other end of the tube is closed^ and

X = 4//(2# + i) if the other end of the tube is open.

To understand the electrical analogy, let us calculate the acoustic

capacitance of the tube. From Section 2-3 this is defined for the

resonator as the ratio of volume displacement to the pressure.

Since d%/dx is the change in volume per unit volume, the capacitance
is given by

^.-_jW f2..n
p dx~ POT"

( 4J

since p = p Gc
2
dt;/dx. The acoustic capacitance per unit length

of tube is then numerically S/poe
2

. Per unit cross section per unit

length this reduces to i/po^
2

. Putting S = X and multiplying

through by p , we can put eq. (2-39) into the form

, .

(2
*

42)

The corresponding electrical problem is that governed by the

equation

which represents
* the propagation of an electrical disturbance along

a transmission line with distributed inductance and capacitance.
The current is / = </, the time derivative of the charge. The
inductance per unit length and the capacitance per unit length are

L and C respectively. In the transmission line the capacitance is

between the line and its surroundings. The analogous acoustic

capacitance, comparing (2-42) and (2-43), enters as if it were due

to the elasticity of the tube, instead of the action of the fluid. If

the fluid is confined in a tube whose walls are not rigid, the capaci-
tance is thereby increased.

1 See Fleming, Propagation of Electric Waves, 3d ed., 1919, p. 125.
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2-7. Compound Resonators. Let us now consider two Helm-
holtz resonators coupled as in Fig. 2-4, where the conductivities

of the necks are CQI and coz respectively, and V\ and V* are the

chamber volumes. The question at once arises, will the natural

frequencies of the coupled resonators be the same as those of the

two regarded separately? Rayleigh has shown l that this is not so.

FIG. 2-4.

For the case where V\ V* V and CQI
= mew (m being any

number), he has calculated the natural frequencies of the coupled

system to be

For the details of the calculation, which is based on the solution

of the Lagrangian equations of motion for the system, reference

should be made to Rayleigh's book. Moreover, the same author 2

has more recently extended the reasoning to show that when V\

and ^2 are not equal, the ratio of the actual frequency v of the

compound resonator to that of either taken separately (assuming
that the isolated frequencies v\ and v^ are equal) is given by

J/J

,

(2-45)

An interesting special illustration of a compound resonator is

afforded by the Boys type. This consists (Fig. 2-5) of a long open

cylindrical tube coupled at one end to a Helmholtz resonator through
1 See Rayleigh, Theory of Sound, 1896, Vol. II, Sec. 310.
2
Rayleigh, Phil. Mag., 36, 231, 1918.
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a neck of conductivity CQ. Paris l has shown that the natural

frequencies v of the combination are determined by the following

equation:

where PI and ^2 are the fundamental frequencies of the isolated

tube and Helmholtz resonator respectively, a is the cross sectional

area of the tube and c is, as usual, the velocity of sound in air.

FIG. 2-5.

This type of resonator has proved of value in hot-wire microphone
work (see Sec. 8-4). The formula (2-46) checks very well with

experimental observations. Paris has extended his studies to in-

clude one or two Helmholtz resonators attached at the side of a

cylindrical tube.2 This work was done at the Acoustical Research

Section of the Signals Experiment Establishment at Woolwich

(England).
QUESTIONS AND PROBLEMS

i. In the case of the forced oscillations of the material system
the differential equation of motion of which is

m\ + K +ft =

show that m occurs for the frequency:

27T

For a system in which m = 100 gm., KI = 200 dynes sec/cm and

/"== 1.6 X io7
dynes/cm, calculate PI and VQ (

= i/27rV//w), and

calculate percentage difference.

1 E. T. Paris, Proc. Roy. Soc. A, xox, 393, 1922.
2 E. T. Paris, Phil. Mag., 48, 769, 1924.
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2. Prove that the free oscillation frequency of the system in

Problem i, i.e., the frequency with which the system will oscillate

if disturbed from equilibrium and allowed to vibrate freely, is

In particular solve the differential equation to find in this case

and, using the data in Problem I, calculate how long it will take

the system to have its amplitude reduced to i/e of its original value

(i.e., the so-called decay modulus).

3. The number of periods it takes a given tuning fork of fre-

quency 256 cycles to have its amplitude diminished in the ratio

i/e is about 5900. Find the value of the interval w/coo, in which

the intensity of resonance (measured by W} falls to one-half its

maximum value. Do the same for an air resonator for which the

corresponding number of periods is 3300. Compare the results and

comment on them. Plot curve for W> using data of Problem i and

taking Sp$ arbitrary. Plot for two values of A'i, say first equal to

200 dynes sec/cm and second 400 dynes sec/cm.

4. In the case of a Helmholtz (or any) resonator, does the reso-

nator create energy? Then why is there an increase in energy
content in the space occupied by the resonator? All types of wind

musical instruments utilize a resonating volume of air and evidently
the amount of the acoustical output is markedly increased thereby.
Reconcile this fact with your answer to the first question above.

5. Is a resonance receiving instrument essentially a space inte-

grating or a time integrating instrument? Explain.
6. Judging from Section 2-7 on compound resonators, what

general statement can be made concerning the retention of indi-

vidual natural frequencies when two systems are (i) closely and

(2) loosely coupled?

7. Given the following data for a Helmholtz resonator of fre-

quency 256:
Diameter of sphere

=
13 cm,

" "
opening = 3.02 cm,

Volume of resonator chamber = 1053 cc.

Compute the conductivity CQ of the opening and compare with the

theoretical value. Compute the amplification constant of this

resonator at its resonance frequency.
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8. Deduce the exact values of the frequency which give X and

X (for the Helmholtz resonator) maximum values.

9. Deduce the resonance wave lengths for a cylindrical tube of

length /, when

(a) One end is open and the other closed.

(b) Both ends are closed.

Discuss the physical validity of the boundary conditions used.

10. Show that if a prescribed harmonic source of sound main-

tains a displacement
= A cos w/ at one end of a cylindrical tube

of length /, the condition for resonance (neglecting dissipation) is

X = 2//X if the other end of the tube is closed, and X = 4//(2# + i),

if the other end is open (?/ being any integer). Discuss the same

problem when damping is taken into account and show that the

same result follows approximately.
n. Prove that the average rate of transfer of energy to a vi-

brating system by an external force is equal to the average rate of

dissipation (see Sec. 2-2).

12. In eq. (2-14) the applied pressure is said to be the sum of

three pressures. Do these three exist at the same point? Is there

any assumption, not stated in the text, involved in this equation?

13. Justify the statement preceding eq. (2-27) to the effect that

X is a linear function of <pi <pz .

14. Derive the differential equation for the free transverse

vibrations of a uniform, flexible, stretched string. Integrate the

equation for the case of simple harmonic vibrations subject to the

boundary condition that the string is finite in length and fastened at

each end. Determine the natural frequencies of vibration.



CHAPTER III

TRANSMISSION. CHANGES IN AREA OF WAVE FRONT

3*1. Transmission in a Plane Wave. It has already been

pointed out (Sec. 1-15) that the propagation of an acoustic wave
is accompanied by the transmission of energy through the medium.
!The power is the flow of energy per second) In Section 1-15 the

calculation of power was made by finding the energy density and

multiplying it by the velocity of sound, yielding the power trans-

mission per unit area perpendicular to the direction of propagation.
This quantity was then defined as the intensity. Another way of

obtaining the power transmission will obviously be to calculate

the rate at which work is done on the medium. But this, for any

particular place and instant and for each unit area, is equal to the

product of excess pressure and particle velocity.

The expressions for the pressure and the corresponding particle

velocity in the case of a plane wave have already been given in

eqs. (i'2j) and (i'24). They are respectively

p = fopo^sin k(ct x) (3-1)
and

= kA sin k(ct x). (3-2)

It is to be noted that the phase difference between these two quan-
tities is zero. In the electrical analogue the power factor (the

cosine of the phase difference between the electromotive force and

the current see Sec. 2-5) is thus unity. Consequently the average

power transmission per unit area is simply

P-i^Vpo, (3-3)

if we recall that the time average of sin2 k(ct x) = I/2.
1 An

examination of (3'i) in the light of the latter fact shows at once that

1 The time average of any periodic function/(#, /) as here understood is

ifyc.,1T JQ

where the time interval r is large compared with one period.

62
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p== i> (3
'

4)

the bar indicating, as usual, time average. Hence P, the average

power transmission per unit area, is equal to /, the intensity as

defined in Section 1-15.

The acoustic impedance in this case is given by

P. - P - !* . ti. f \

The impedance is thus a real quantity and represents a resistance.

It is often denoted as the radiation resistance of the medium. It is

worth noting that for a given medium the acoustic impedance of

a progressive plane wave is everywhere the same provided the size

of the wave front does not alter. This is the situation, for example,
in a cylindrical tube with cross section small compared with the

wave length and of infinite length (i.e., wave in one direction only).

The quantity p Qc y i.e., the quantity which when divided by S yields

the acoustic or radiation resistance of the medium for a plane wave,
will be called hereafter the specific acoustic resistance for a plane
wave. It is the acoustic resistance/or (not per) unit area, following

the analogy of specific resistance in electrical theory. In general

then we shall term p/ the specific acoustic impedance. For a

plane wave it is, as we have just seen, a specific resistance. But

this is not generally true, as we shall see in the next section in the

discussion of spherical waves.

32. Transmission in a Spherical Wave. The transmission in

a spherical wave differs in certain important respects from that in

a plane wave. From Section 1-14 (eqs. (1-37) and (1-41)) we have

for the excess pressure and corresponding particle velocity in a

diverging spherical wave the respective expressions,

p = - ickdp /r-e lk(ct- r)

and

Let us first consider the impedance. The quantity p/k has been

defined as the specific acoustic impedance. From the above we then

have

p __ ip ck __ L~ "
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Another way of writing this quantity is

'*' (37)

where is the phase angle between^) and , and is of such magnitude
that

tan =
j-r

'

(3* 8 )

It is generally desirable to split the specific impedance into its real

and imaginary parts. Thus we write

Z, = Z + *Z, (3-9)
where

Zal==

and

^2 == PoCK
j TT~2

*

\3*^ '

Obviously

i +

Zi is the specific acoustic resistance
',
while Z,2 is the specific acoustic

reactance; the latter in this case, since it is positive, is a specific

inertance, following the definition given in Section 2-3.

The total acoustic impedance is given by

VTA
which in absolute value is

\z\
=

1

So far we have considered a diverging wave only. We next

investigate the case of the converging wave, for which the velocity

potential is

Then
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and

Consequently in this case we have for the impedance com-

ponents, recalling that is to be measured in the direction of

decreasing ry i.e., the direction in which the wave is moving,

and

Z82
= pock /0 ., (3*19)

1 -f- R~1
"

The latter is the negative of (3-11). In other words, ZS2 is now
the reciprocal of a specific acoustic capacitance instead of being a

specific inertance.

The power factor is cos and its value is

kr
cos & = - '

From the electrical analogy it is seen that the average power trans-

mission per unit area is given by

P =
-pinoxSmax COS 0,

where
_/>max and fmax are the maximum real values of pressure and

velocity, respectively. But we have

, .

(3-22)

and
i Ak f .

*- =
T^Tt

'

(3
'

23)

Hence there finally results

P =^ (3-4)

It is to be understood, of course, that (3*24) can be obtained directly

by calculating the time average of the product of the real parts
of p and . Indeed this is the way the formula (3-21) is derived.

The expression for P in (3-24) thus represents the intensity and

shows that for a spherical wave this quantity varies inversely as
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the square of the distance from the source. This important fact

has already been used in an earlier portion of the book. Inci-

dentally it is seen that the eq. (3-4) derived in Section 3-1 for plane
waves also holds for spherical wave transmission (note that for p
in the formula we must, of course, use the real part).

The expression for the specific acoustic resistance Z8i given in

(3*10) is particularly interesting and important as it enables us to

calculate the dissipative force due to the radiation of sound energy
from a source into a fluid medium. To be specific, suppose we
have a small spherical source of sound of radius r . Then if r is

sufficiently small in comparison with the wave length the specific
acoustic resistance at r becomes L

f. (3-25)

Now if the sound is being radiated through a hemisphere of surface

*$"
=

271-ro
2
, we can write for the total acoustic resistance

whence the dissipative force for the whole area, which is given by
ZifS

2
,
is equal to

^t 0-7)

which is the expression which has already been used in the case of

the opening to the Helmholtz resonator (Sec. 2-3). Strictly speak-

ing, the above derivation applies only to the case of a vibrating

sphere, but if the opening to the resonator is small compared with

the wave length the comparison is allowable as an approximation.
The physical significance of the distinction between the acoustic

impedance of a plane wave and that of a spherical wave is well

illustrated in the following example. Let a plane wave be incident

on an infinite plane wall with a small aperture. From this aperture
there emerges an approximately hemispherical wave. The specific

acoustic impedance of the incident wave is real, and p and are in

phase. The specific acoustic impedance of the emergent wave is

complex and there is a phase difference between p and (eq. (3*8))

which is practically 90 in the neighborhood of the aperture. In

1 It can be shown (see Sec. 10*5) that the impedance expressions in the case of a

finite source emitting spherical waves are, at any distance from the center of the source

greater than the radius, the same as for a similar point source located at the center.
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other words, a phase change of a quarter wave length is introduced

by the transmission through the aperture and this may be attrib-

uted to the physical change in impedance.
1

3-3. Absorption by the Medium. Our discussion in the pre-

ceding section has indicated that when sound in a spherical wave is

transmitted through a medium the power transmission should fall

off as the inverse square of the distance from the source. As a

matter of fact, in practice this is never quite true. In other words,
in addition to the normal scattering due to spreading there is

always present absorption of energy by the medium. For the

causes of the absorption we may look to the viscosity of the medium,
heat conduction, and in large scale transmission non-homogeneities
in the structure of the medium, such as are produced by the effects

of wind and temperature or by variation in density due to change
in composition, etc. The effect of viscosity will now be considered.

As might be expected this is not so important in the case of spherical
waves as in that of plane waves in a tube.

We can best get at the matter by referring back to eq. (2-39)

in Section 2-6, which is the equation of plane wave propagation
in a tube, neglecting damping or frictional resistance. Introducing
a dissipation force the more general equation of motion is

, (3-28)

where R' is the damping coefficient per unit area. Careful analysis
of the vibrations of a viscous fluid 2 shows that (3-28) will be the

wave equation in such a fluid if we have

R' =
\
M2

, (3-29)
vy

where k = u/c y
as usual, and ju is the coefficient of viscosity.

The solution to (3'28) is found in the usual way by assuming
=

^ Qetk(ci~mx\ substituting into the equation and thereby deter-

mining m. The result proves to be, neglecting squares of small

quantities, = ^-<2/3)(M*/p ovw-*>
5 (3.30)

which represents a progressive wave with exponentially decreasing

amplitude. It will be noted that the so-called attenuation factory

1 Attention is called to the analogous case in optics which is not so easily sensed.

2 See H. Lamb, Dynamical Theory of Sound, 1925, p. 186.
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|(/i
2
/po<:), depends on the square of the frequency. The actual

damping for waves in air is very small for moderate frequencies

(thus KMVpo*") = -24 X io~8 for co = TOOO in air), but rises

rapidly with increasing frequency. The influence on large scale

transmission through air is believed to have been observed, but is

rather hard to estimate exactly because of the effects of wind and

temperature already emphasized (Sees. 1-7 and 1-8).

The effect of heat conduction, which is comparable with but

certainly not greater than that of viscosity, need not detain us here.

Reference may be made to the discussion in Lamb. 1

Viscosity may
be expected to exert a greater influence when sound waves pass

through a relatively narrow tube in which the wall offers great
resistance to the motion of the air in .contact with it. The solution

in this case was first given by Helmholtz and complete details

may be found in Rayleigh,
2 Lamb 3 or Crandall.4 We are inter-

ested here only in the final result, which can be expressed in the

same form as (3*30), namely

= <?-

where now we have

i o/ >

a = x/- <

(
N

and U 3 ;

k' = /*'.

In the above equations a represents the radius of the tube and c
f

is the modified phase velocity of the wave, being given by

(3
.

33)UJJ'

The theory underlying the development of these equations is only

approximate and empirical formulas arising from experiments are

doubtless more accurate. Recently
5 Wold and Stibitz have given

the empirical formula,

c' = c( i

V 01

which agrees fairly well with the form of (3*33). It is, at any rate,

1 H. Lamb, loc. cit., p. 190.
2
Rayleigh, loc. cit., I, p. 318.

3 Lamb, loc. cit., p. 193.
4
Crandall, loc. cit., p. 237.

5
Science, LXVI, No. 1712, 1927.
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interesting to note that the effect of the viscous damping in this

case is to lower the velocity of the wave.

For tubes so narrow that the inertia and kinetic reaction of the

fluid may be neglected in comparison with the frictional force, and

where the condensations and rarefactions of the fluid are practically
isothermal on account of the almost perfect heat conduction,

Rayleigh
l has shown that the solution may still be put into the

general form (3*31); or more specifically we have

which gives the average displacement velocity instead of the dis-

placement itself. The damping factor R" in this case is

#" =
^> (3'34)

which is the well known Poiseuille coefficient, commonly associated

with the efflux of a fluid from a capillary tube. The quantity p Q

in the formula is the mean equilibrium value of the pressure in the

tube. Rayleigh and others have made important application of

(3'34) to tne deadening sound in the interstices in carpets and

curtains.

The damping due to absorption in transmission of sound waves

in three dimensions through water is not primarily due to viscosity.

In fact, it is decrease in intensity produced by scattering, which

in turn is caused by the non-homogeneities in the structure of the

water. It is interesting to note that, at any rate, the absorption
in this case is still an exponential function of the distance from the

source and hence causes a more rapid decrease of intensity than

would occur with an inverse square function. This matter is of

great importance in sound signalling in water and will be further

discussed in the chapter on that subject.

3-4. Sound Transmission in Pipes. Constantinesco System of

Hydraulic Power Transmission. We can utilize the material of

the preceding section to discuss briefly the hydraulic transmission

of energy through a pipe line, first developed by M. Constantinesco 2

during the late war. If we have a rigid pipe and vibrations are

communicated to the enclosed fluid (generally water) by the alter-

1
Rayleigh, loc. cit., p. 327. See also Lamb, loc. cit., p. 197.

2 M. Constantinesco, Theory of Sonics, London, 1920.
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nating motion of a piston in one end, energy will be transmitted

to a piston placed at the other end. In the practical application

the frequency is of the order of 100 cycles/sec.

If we neglect the wave reflected from the output end, the theory
of the transmission becomes fairly simple. The displacement at

any point distant x from the input end is (see eq. (3-31) in Sec. 3-3)

= fc^-yC"*-*), (3.35)

where for the moment we leave aside the exact evaluation of a.

and /3. The velocity and excess pressure are given by

((at
-

ftx\ (3.36)

<<-^. (3-37)

To get the power transmission, we must find the time average of

the product of reai-/>rca i. Now

{real
= W&tf-*

1* Sin (/ 0#),

/>real
= Po^f0<?~

a
*[> COS (/ 0#) sin (a)/

~
jftv)].

Hence

P =
frealjOreal

= po*W*-*~. (3*38)

If the length of the line is /, the efficiency or power transmission

ratio is therefore

Pr = r. (3-39)

More extended analysis
1 which takes into account the return

wave from the output end indicates that for maximum power trans-

mission we should have
sin /3/

= o
or

/ = 0T//J, (3-40)

where n is any integer. It is of interest to note that this is likewise

the condition for maximum response in the case of forced oscillations

of a tube closed at one end. (See Prob. 10, Chap. II.)

Concerning the exact values of a and /3 there seems to be some
confusion. The general custom seems to be to use the Poiseuille

coefficient in computing a. As the discussion in the Section 3-3

indicates, however, this procedure is valid only if the pipe line is

so narrow that the kinetic reaction of the fluid can be neglected in

1 See Crandall, loc. cit., p. 101.
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comparison with the frictional forces. For the larger tubes actually

in use, it would appear more satisfactory, therefore, to use the

values indicated in (3-32) of Section 3-3.

It should be emphasized that the above considerations are based

on the assumption that the pipe is rigid. A more careful analysis

would show that the elasticity of the pipe must be taken into con-

sideration. Its effect naturally will be to increase a. and reduce

the efficiency and the velocity materially. For further details con-

cerning the practical application of the system, which up to the

present time has been rather limited, reference should be made to

Drysdale et al., "The Mechanical Properties of Fluids," 1924,

pages 221 ff. and 321, and also to Constantinesco's book above

mentioned.

Somewhat allied to the transmission problem above considered

is the Kundt's tube experiment in which forced oscillations in a

tube closed at one end are produced by a piston at the other end.

The resonance condition for this case has already been mentioned

in Section 2-6 and is the same as that for maximum transmission

in the Constantinesco system, though the phenomena are physically
somewhat different in the two cases. (See Crandall, loc. cit., for

the details.) Most standard texts discuss the Kundt's tube thor-

oughly, but there is one point of interest which may be worth

mentioning here. It is usually stated that the piston end is approxi-

mately but not exactly at a node, implying that there is an exact

node in the near vicinity. One of the authors l has shown that

this view is incorrect. It is more correct to say that the piston
end is at an approximate node, that is, this end has its mean position
at a point which approximates a node more nearly than any other

point along the tube in the vicinity.

In the passage of sound through long tubes of fairly large diam-

eter (i.e., voice tubes of diameter one inch to four inches) there is

an attenuation which is not primarily the result of viscosity or of

heat conduction but is probably due to absorption by the walls

of the tube.2 Reference may here be made to experiments recently

performed on voice tubes by Eckhardt and others.3
Long tubes

such as are used on shipboard were studied, assuming exponential
1 G. W. Stewart, . . . (not yet published).
2 The investigators here mentioned favor the interpretation that the attenuation

is due particularly to "skin friction."

3 E. A. Eckhardt, V. L. Chrisler, P. P. Quayle, M. J. Evans and E. Buckingham,

Technologic Papers of the Bureau of Standards, 21, 163 (1926-27).
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absorption of sound on passage through them. The measurements

give the values of an attenuation coefficient <x defined as follows

a = 2.303/7- logic /o//,

where 7 is the initial intensity and / that after passing through a

length / feet of tubing. The tubes used were made of sections 10

feet in length. A few sample results will be noted here. For

straight tubing of brass one inch in diameter the mean value of a
over a range of frequencies from 254 to 3280 is 0.041, corresponding
to a reduction in intensity to 66% of its original value after passage

through 10 feet of tubing. Increase of the diameter to 4 inches

decreases a to 0.015, corresponding to a reduction in intensity to

86% for a lo-foot section. For fiber tubes the corresponding values

of a are about 50% greater than those for brass, a result under-

standable on the basis of the assumption of absorption by the walls.

Sweeps consisting of bends of 90 and 10 feet in over all length
were also investigated. Thus for a 2 inch brass bend the average
a comes out to be 0.030, decreasing to 0.018 for a 4 inch bend.

Flexible tubes show much higher attenuation. The article referred

to contains the results of measurements on the effects of various

fittings, including cone terminals and inserted diaphragms. Many
of the values given are unfortunately probably in considerable error

due to the difficulty of avoiding resonance effects.

The same investigators also report measurements on the articu-

lation (see Sec. 11-4) in sound transmitted through voice tubes.

3-5. Transmission in Pipes. Change of Area at a Junction.

Consider two pipes joined as in the accompanying figure (Fig. 3-1)

with sound traveling from the pipe of cross section Si to that of

cross section *S'2 . The problem is to find the power transmission

through the junction, assuming that there is no return wave from

the conduit at the right. The result will then apply strictly to

an infinite tube in which there is no damping. Nevertheless in

practice the return wave will often be safely negligible. For the

displacements in the incident, reflected and transmitted waves at

the junction (which we shall take to correspond to x = o) we shall

write: l

, (3-40

wherein the amplitudes A\ and A^ are assumed complex in order to

1 It should be understood here and in all cases of acoustic transmission that unless

otherwise specified the existence of a steady state is implied.
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take care of general phase differences. From eqs. (1-14) and (1-26)

and the discussion accompanying the latter, we may write

where the minus or plus sign is to be taken according as the wave
is progressing in the positive or negative direction. We then have

T
\
J

i
FIG. 3-1.

(applying the above equation to in the form given by eq. (1-51),
for example) for the excess pressures at the junction the corre-

sponding expressions:

pi
= iwR^loe"*',

p r
= iuRiA^ 1" 1

, (3-42)

pi
=

iuRidte'"',

wherein we denote pQc by /?, for it is by eq. (3-5) the specific acoustic

resistance of a plane wave. It should also be recalled that r is

measured in the negative x direction. The boundary conditions

to be satisfied are (see Sec. 1-18):

(1) continuity of pressure,

(2) continuity of discharge rate or volume displacement. That

s, we must have at x o

and
/>t + pr

=
ft (3-43)

S'i(*.
-

*r)
=

Sifc, (3-44)

where the minus sign in eq. (3-44) recalls that f r is measured in the

negative x direction. These two conditions yield respectively

A, + A, = A* (3.45)
and

(3-46)
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If we call .S'2/.S'i
=

;, we have therefore

An ~-Al - m
;/7+ j\

~
'

or, solving for A\ and y/2 in terms of Jo,

. . I m I \ , ,^ "- ^
( m '+l )

(3-47)

and

(3.48)

l<Yom the above equations we draw at once the following con-

clusions:

(1) If x/o is real, then both A\ and A>i must be real.

(2) The transmitted wave is always in the same phase as the

incident wave with respect to pressure and displacement (from

(3) If ;w < i, y/i and /h have the same sign and hence the

incident and reflected waves are in the same phase for both dis-

placement and pressure. But if m > i, the incident and reflected

waves are opposite in phase. We note that, as in Section T'i8,

the change in phase is either zero (/// < i) or ir (in > i). If m i,

there is, of course, no reflected wave at all.

The average flow of energy in the incident wave is given by

*^i/>> while the transmitted flow is Szptt-t- We have therefore for

the power transmission ratio:

Transmitted flow Sttkt <?2^2
2

4?

Incident flow
~

V
~~

-^o2
~~

(m + i)
2

It thus appears that the percentage of energy reflected is

/- i , .

(350)

This is the result already stated in Section 1*5.

The reader will note that the effect on the phase of a plane
wave in a conduit when reflection occurs as a result of transition

to a smaller cross section is analogous to that which we have seen

to be associated with reflection of sound going from a rare to a
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dense medium. Likewise the transition from small cross section to

large is analogous to the passage of sound from a dense to a rare

medium. We shall have occasion to make use of this analogy in

our further study of transmission problems.

3*6. Change of Area at Two Junctions. Constriction and Ex-

pansion.
1

Figure 3-2 represents two conduits connected by a third

T
s,

r

FIG. 3-2.

conduit or channel of length /. The cross sectional areas are *9,,

2, and <V3 respectively. The boundary between ?i and Sz is

denoted by / and that between ^2 and *V 3 by //. Sound energy is

supposed to pass through the system from left to right and it is

desired to find the yield, or power transmission ratio, assuming no

absorption damping. At / we expect to have an incident and

reflected wave in S^ and an incident and reflected wave in <V2 . At
// there will likewise be an incident and reflected wave in Sz and
a transmitted wave in V 3 , neglecting as usual the return wave in *V

;{ .

The incident and reflected wave displacements in Si will be de-

noted by

and
Bit"',

(3-51)

respectively. The displacements of waves of corresponding direc-

tions (at /) in 2 are

wherein we have assumed the coefficients to be complex to take

care of all phase differences. If (3-52) gives the two displacements

1 Much of the material in this and the following sections of this chapter follows

with certain modifications the work of H. Brillie, Le Genie Civil, 75, 223 (1919).
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at / in 2, the corresponding two components in Sz at // are

Lastly we may write, for the transmitted wave displacement at //

in 3,

Again x need not appear, for A$ is complex and contains the phase.
At each surface we have the two necessary conditions:

(1) continuity of pressure,

(2) continuity of volume displacement or of volume current.

On substitution we have therefore the corresponding equations
for boundary /:

At + B l
= ^2 + 52,

S,(A, - Bi) = St(A* - 2).

(3
'

54)

In the above it should be noted that the minus signs in the dis-

placement condition are due to the fact that the displacements
B\e**

1 and Btf
ia)t

are, because of the definition of positive displace-

ment in this text, measured in the negative x direction. At the

boundary // we have

A*-* 1 + B^ 1 = A*

Calling 82/81 = mi and 83/82 Wz, it follows from eq. (3*54) that

(3-56)

Similarly from the second set of conditions it follows that

(3-57)

B l
= l

-\_(mi + i)Bt
-

(an

from which, by substitution into eq. (3*56) above, we finally have on

reduction
A

/fi = [(mim* + i) cos kl + i(mi + m*) sin kf}. (3-58)
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Similarly,
j

Bi = --3

[(wi7722 i) cos kl + i(m\ mz) sin /]. (3-59)

Now we have seen that the power transmission ratio is the ratio

of the average energy flow in the transmitted wave in $3 to the

average energy flow in the incident wave in Si. It is then Pr

=
Szptkt/Sip&i- The only question arises as to the treatment of

the complex amplitudes. This is easily handled, but the discussion

is given here in full for future reference. Let A\ a\ + ib\ y say.

Then we have & = A\&*
1

and, since pi
= p ci (eq. (1-45)),

|, real
=

rtiCO Sin CO/ ^iCO COS CO/,

/>, real
= ~

Po^[#lCO sin CO/ + ^ XCO COS CO/].

Therefore

(3-60')

It therefore follows at once that

But from eq. (3-58) above, we have

|^i I

2 =
i-|//3!

2
[(wiw 2 + i)

2 cos2 */ + (ii + ^ 2)
2 sin2

and therefore the transmission ratio becomes

+ i)
2 cos 2 kl + (;i + w 2)

2 sin 2 kl

I

,.
U

+ i)
2

It will now be observed from the above:

(1) When kl is very small, the transmission is independent of

the cross sectional area of the channel or mid section.

(2) If sin kl = i, we have for the power transmission

1.
( 62)2 vo
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which, it is interesting to notice, becomes equal to unity if m\ = m z

or 2
2 = SiSa, i.e., if the cross section of the channel is the geo-

metrical mean of those of the two conduits.

(3) If sin kl o, we have

which equals unity for m\m^ = I or Si 3. Under these con-

ditions the introduction of the constriction or channel does not alter

the transmission, except of course through absorption, which we are

neglecting in the present discussion. Now since kl 27T//X, it

follows that for a given length of channel the particular wave

lengths X = zl/n (where n is any integer) are transmitted most

intensely. In particular we get complete transmission for these

wave lengths if 6*3
= Si independently of the cross section of the

channel.

In the case where m\ = m^ we get complete transmission or

unit yield for the wave lengths X = ^l/(in + i), where n is any

integer. In general, then, the interposition of a channel either

constricting or expanding in nature renders the conduit selective.

That there is a difference in phase between the incident wave

displacement and that of the finally transmitted wave is seen at

once from eq. (3'58). We can get its magnitude by writing

whence we have at once

?n\ -f- 7729 , , / s N

tan e =
...... . ; tan *' (3-64)

This shows that A\ and A* do not differ in phase by kl as one might

easily suppose, and that this actual phase difference depends upon
m\ and m z as well as upon kl. The practical point to be observed is

that, if one wishes to keep the phase of the transmitted wave con-

stant, one must not make intensity adjustments by pinching or

constricting the tube. The above ideal case shows that a small

constriction cannot change intensity anyway, and change of phase
is often a matter of importance in acoustic experiments. It should

again be emphasized that we are taking no account of viscous

damping in the above discussion. However, the treatment of
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Section 3-3 assures us that this effect will be small unless the cross

sections of tube and channel are very small.

Experiments have been carried out to test the formula (3-6 1)

both for constrictive and expansive channels. The results, which

are in good accord with the theory, are referred to more specifically

in Section 7-1 in connection with simple methods of sound filtration.

3-7. Conical Pipes. We first consider briefly the resonance

properties of a cone. This will then lead up to the use of conical

pipes for transmitting sound.

The accompanying figure (Fig. 3-3) represents a frustrum of a

right circular cone with vertex at O. Let the distance from O of

FIG. 3-3.

any point on the bounding circle at the smaller end be r\ and the

corresponding distance for the larger end be r^ By virtue of

symmetry the velocity potential at any point distant r from is

(see Sec. 1-14)

where A and B are arbitrary constants and we must consider both

converging and diverging waves. The condensation and excess

pressure are given by

and
Ct

(3.67)

Now if the conical tube is open at both ends the excess pressure
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will be approximately zero at r = r\ and r = r% for all values of /.

Recognizing that A and B are in general complex and writing
A = ai + /0 2 and B =

1 + / 2 , we finally have, using the real

parts,
(0i + ^0 cos kn + (02 2) sin kn =

o,

(^i + ^i) cos kri + (0 2 ^2) sin kr% o.

These lead at once to

sin kfa n) = o
or

WX X , v

rz - r,
=

, (3-69)

wherein we note the interesting fact that if the conicality is slight,

eq. (3*69) reduces to the condition already deduced for cylindrical

pipes (Sec. 2-6). For a conical pipe with ends closed we must have
= o at r = r\ and r = r%. Now

j
= ^= _ /i+ tt)^^(rl-r)

_ /i_ #^
dr \ r / r \ r

If neither r\ nor r2 is zero, we have the two equations

Ae~^{\ + i*n] + 5^+7fcrii - /*n] = o,

cos

Proceeding as usual, eqs. (3^71) become

(a^+bi) (cos ^ri+^i sin ^rj) + (02 ^2) (sin kr\ kr\

(i+ ^i) (cos r2+r2 sin kr%) + (02 ^2) (sin kr^ kr^ cos

whence by elimination we have

kr\ arc tan kri = krz arc tan kr^ (3'72)

a transcendental equation from which the relation between n, r%

and X must be evaluated graphically.
In the case of a cone closed at the vertex we shall have n =

o,

whence it would seem that the above reasoning could not apply.

However, we know that at the origin of spherical waves must be

finite and therefore r2
| must approach zero as r = o. For this

reason the above equation (eq. (372)) still holds for r\ = o and

becomes (if we set r% r simply)

kr = tan kr. (3-73)
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Graphical solution of eq. (373) will be found in Barton, Textbook

of Sound, p. 261, Fig. 51.

Suppose next that we have a progressive spherical wave travel-

ing from left to right through a pipe made of two cones, as in

Fig. 3*4. It is desired to cal- ^
culate the power transmis-

sion through the system.
Let the distance from 0\ to

the boundary circle be r\

and that from 2 be r2 . Then
at the boundary we shall have

an incident and reflected wave
in the left section and a trans-

mitted wave in the right sec-

tion. The expressions for the

displacement velocities at the

boundary for these waves then

are
Fio. 3-4-

where we have consolidated by writing A\ = Ai'e"**1
, etc,, and

where the plus sign in the expression for r
, TI

is due to the fact

that r , TI
is measured in the direction of decreasing r. For the

excess pressures at the boundary we have similarly

(375)

rz

The boundary conditions are as usual:

(1) continuity of pressure,

(2) continuity of volume displacement or current.
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That is, we have

and

By eliminating ^2 between the above two equations we arrive at

the equation

V>'2

which, on introducing the transformation

ia-*)-
becomes

5 '
=
^TH^F' (3>8o)

whence we have at once from eq. (3-76)

,A

(3'80

Now the power transmission ratio is

Here we have S,t
= S

ri
. In forming the products of p and

,
we

must, of course, take the real parts, writing

*= U.IA
(3 3)

where |^/i| and j^l are the moduli of A\ and ^f2 respectively.
We then have, taking the time averages, the following result:
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By the application of eq. (3-81) above, this reduces at once to

1 "t~ "7 ( ~_ i i ... r

(3-85)

in terms of the wave length and the radii. It is worth noting that

in this kind of transmission for a given system the yield increases

greatly as the frequency increases,
1 and there is otherwise no selec-

tive effect such as we found in Section 3-6. When r2
=

ri, there

is, of course, no change in the conicality, and 100% yield results

(always neglecting dissipation) for all frequencies.

It is obvious that the assumption is made that the wave is

always spherical and that at the change in conicality spherical

waves with two radii of curvature of wave fronts exist at the same

point.
It is interesting also to compare eq. (3-85) with P r for the case

where a plane wave in a tube encounters an abrupt change in cross

section (as in Sec. 3-5). In the latter case (see eq. (3-49)) the power
transmission ratio depends only on the change in cross section and

not at all on the wave length of the sound. In eq. (3-85) there is

evident a dependence both on the dimensions of the tube and on

wave length.

38. Conical and Exponential Connectors. In Section 3-5 we
have seen that an abrupt change in area of a tube through which

sound is passing always leads to a decrease in the transmission.

It is natural to suppose that if the transition from large cross section

to small or vice versa is made to occur more gradually, better

transmission will be obtained. This is in fact the case as the follow-

ing analysis shows.

Let us first consider the case of a conical connector, shown in

diagrammatic form in Fig. 3-5.

There are here shown two conduits of cross sectional areas Si

and Sz respectively joined by the frustrum of a cone of slant height
r% r\ = V and altitude = /. If a plane sound wave traverses

the system from left to right, we shall have, at the boundary 7,

1 This obviously can not be extended to the limit of very high frequencies, for

our fundamental theory does not contemplate wave lengths small compared with

the transverse dimensions of the tubes.



84 ACOUSTICS

incident and reflected plane waves to the left, and incident and

reflected spherical waves to the right. At the boundary // we
shall have incident and reflected spherical waves to the left and

a transmitted plane wave to the right. The situation is formally
much like that of the case of a constriction or expansion in a con-

FIG. 3-5.

duit, already treated in Section 3-6; only here we have to consider

the passage from plane to spherical waves and back again. It is

to be observed, of course, that the assumed spherical or plane shape
of the waves at these boundaries does not strictly exist, and that

the theory is consequently only approximate.
For the incident and reflected wave velocities at / in the conduit

let us take respectively A&* and Be**1

, while the corresponding

quantities at / in the connector are (see eq. (3-74) and note that the

factor ik is included in A \ and E\ here)

and
-
pv.

The corresponding pressures at 7 are: in the conduit

pQcAe
1 and p^cBe^^y

while in the connector they are (see eq. (3-75))

ESE^lg^t and es*!*2 eit.
r\ r\

At the boundary // we have: in the connector

(i) Velocities:

and _,^v*v,
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(2) Pressures:

P OC <?-'
A 'V"" and p (>c e~M'e

wt
.

r% t*2

At // in the conduit we have:

(1) Transmitted velocity:

(2) Transmitted pressure:

We now have to write down the boundary conditions. At 7, these

become

A + B=-(Ai + 50, (3-86)
r\

I _f)^_( I+ f)5.. (3
.

87)
krij n \ krij r\

^ "

At //, they are

-- (A,e"^ + B^ kl/
)
= A* (3-88)*

The mathematical problem is to eliminate 5, A\ and B\ from the

above four equations and express A in terms of A<L. Adding the

first two, we have

Solving the last two for A\ and E\ in terms of A^ we get

Substitution into eq. (3-90) then yields, after separation into real

and imaginary parts,
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Noting that S*/Si = r2
2
/n

2 and calling V^V^i =
#*> and further

introducing a = ikl' y whereby r\ = a/lk(m i) and r% = (<r/2-k)

X m/(m i), we can express the coefficient of At wholly in terms

of m and cr. Thus

(7
,

(;;/
-

T)
2

. (7

cos h sin -
2 77/(7 2

,
,

(3-94)

Now the power transmission ratio is

flr = 7;;
, Uii

1

Hence we have

j + ^ li. + ""
/' sin 2 -- i +i ma i ..._< _ i

. \ 2 r

: sin 2 -
i

i 2 [

-I)

This can be contracted into the somewhat simpler form

* r
==

~f 7~T T\9~I T7~ '"1^ r (~~ \ > / TfTI \ "lo \3"97/
(;;/ i)

2
I cos i

\,,i, *, ^wc. \w i)
2 /cr sin

i +
\1 2

/J

by the use of trigonometric identities.

BrillieY from whose articles the general outline of the above

discussion is taken, has made computations using eq. (3*97) with

results summarized in Fig. 3*6, showing the power transmission

ratio for varying area ratios for sound of frequency 700 cycles. It

is of especially great interest to note the greater yield in the case

of the conical connection than in the corresponding abrupt change.
It is important to remember, in this connection, that often the

actual power transmission is not of such moment as the absence

of a reflected wave.

Figure 3-60 shows in a somewhat more extensive fashion the

power transmission ratio for conical connectors of various dimen-

sions as a function of the frequency. The curves are a result of

1 See Brillie, Le Gcnic Civil, 75, 218, 1919.
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calculations made by one of the authors l

by a method somewhat
different from that used by Brillie* (see below).

In Section 3-6 we saw (eq. (3-62)) that if a pipe has an inter-

mediate channel and if the channel length is such that sin kl = i,

a:

Pr'080
VF

095

0999

099

080

0.06

FIG. 3-6.

the transmission ratio is unity, if the cross section of the channel

is a mean proportional between the areas of the pipe on the two

sides of the channel. A number of channels each with cross section

greater or smaller than the one preceding in accordance with the

1 R. B. Lindsay, Phys. Rev., 34, 808, 1929.



88 ACOUSTICS

proportion stated might be joined to form a connection between

two tubes of different areas, and if the above condition is satisfied

for each channel, PT
= i may be expected. If we could carry this

to the limit of very small channel length the resulting connector

will have a profile of exponential form, or S = Soe
mx

. One might

500 1000 1500 000

Frequency (cycles per second)

FIG. y6a. Power transmission through conical connector.

I, m =
2, / == 10 cm; II, m =

2, / = 50 cm.

Ill, m 3, / = 10 cm; IV, m =
3, / = 50 cm.

expect then that the exponential connector will always give perfect

transmission, but this is actually not true, and the trouble is that

we are not logically justified in pushing the argument in the case

of the discontinuous change in cross section to the continuous case.

As a matter of fact, if we treat the wave motion in the expo-
nential connector as if the latter were an exponential horn, using
the theory to be developed in Chapter VI, and then apply the usual

boundary conditions, we arrive at the following expression for the

transmission through an exponential connector:

Pr =
+ ' smz

where m is the coefficient of x in the exponential and y2 = k 2

7w 2
/4- It is seen that for very short connectors the value ap-

proaches unity. Naturally the validity of this formula rests on

the validity of the horn theory used. A thorough discussion of
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this, particularly as regards the exponential horn, will be found

in Section 6-4.

Brilli l has further discussed the exponential connector as one

through which the wave progresses without reflection. But this

reasoning is based on the assumption of spherical waves, at best

only approximate.
The results of the application of horn theory to acoustical

connectors may be briefly summarized here. 2

Application to the

case of the conical connector yields very simply essentially the

results of the present section. In addition, the general case, where

S = $QX
a

(a arbitrary), is worked out, and it is found that the

transmission for kl large (/ being here the length of the connector

measured along the axis) approaches a value approximately inde-

pendent of a. It is shown that the exponential connector is the

limiting case of the above with increasing a and has a transmission

ratio differing little from that of the former. Finally even in the

case of a connector whose generating curve has a point of inflection,

such as, for example, S = *$V~~*
2

, for large /, the transmission

shows little difference from that of the others. As kl decreases all

these connectors yield values of P r approaching that for abrupt

change in cross section. These theoretical results are in agreement
with the experimental data obtained by one of the authors,

3 accord-

ing to which little if any difference could be detected between the

transmission for actual models of the various types of connectors

here discussed. Hence we may conclude that the exact shape of

the connector is under usual conditions relatively unimportant.

3-9. Application of the Reciprocal Relation to Transmission in

Conduits. There is an important general principle about the

transmission of sound through a conduit which we can establish

by the use of the Helmholtz reciprocal theorem discussed in Sec-

tion I'll. Consider the tube of cross sectional area Si, joined by
a connector of arbitrary character with the tube of cross sectional

area *$V Suppose that there is a plane wave in S\ of a displacement

amplitude A\ giving rise to a plane wave in S* of displacement

amplitude A*. Then the power transmission ratio for a wave going
from left to right is

1
Brillie, Le Genie Civil, 75, 223, 1919.

2 See R. B. Lindsay, loc. cit.

3 G. W. Stewart, unpublished.
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Suppose now we have plane waves from an equal source coming
from 6*2 in the direction from right to left. The amplitude this

will produce in S2 will be SiA\/S% since the maximum volume

displacements due to equal sources are the same. Now according

\

FIG. 37.

to the reciprocal theorem the effect of the source in 6*2 will be to

produce the same velocity potential in S\ as was produced in 2

by an equal source in S\. Since in this case the same is true of

the displacement amplitude, the amplitude in S\ is A^ Therefore

the power transmission ratio for transmission from right to left is

*V2 </:

(3-100)

Hence P r
f = Pry and we conclude that no matter how the connec-

tion is made the yield is the same in either direction.

3-10. Transmission through Tubes in Parallel. We may well

close this chapter by a short discussion of sound transmission

through parallel tubes. The simplest case of this kind is illustrated

by the so-called Quincke Tube shown in the diagram (Fig. 3*8).

S indicates the area of the tube and for simplicity we take Si

=
2 + SV A plane wave incident at the junction C divides in

such a way that the following boundary conditions hold at C:

(1) Volume displacement in Si = Vol. displacement in 2 + Vol.

displacement in <9 3)

(2) Pressure in Si = Pressure in 2
= Pressure in 5V

At C let us have the following for the incident and reflected wave

displacements:



(a) in Si

(li) in ^2

(c) in <93
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Then (referring back to Sec. 3-6) we have for the boundary condi-

tions at C:

A, + Bi = A* + B 2
= A, + 5,,

If we denote the transmitted wave displacement at 1) by
the corresponding boundary conditions at D become

There are thus six boundary condition equations and the mathe-

matical problem is to eliminate the five quantities Bi, A^ J5 2 , A*>

Bz> and eventually express A* in terms of A\. The power trans-

mission will then be given at once by

By carrying through the somewhat tedious elimination, we

finally arrive at

i6sin cos* (/,-/)

Pr =
[1-2 cos
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(3' 104)

From the above equation it will be noted that P r
= o for the follow-

ing cases:

\

(1) k(/3 /a)
= (in + l)?r or 73 /2 = (in + 1}

(2) k(k + /2)
= inir or 73 + /2 = w\,

provided (/3
~

^2) 5^ ^WXTT at the same time, where n and

independent integers (including, of course, zero). These cases

include the well known special case originally discussed by Quincke
l

in which the difference in length between the two tubes is one half

wave length.

In the accompanying figure (Fig. 3-9) are shown the results of

an actual experiment
2 on such a Quincke tube. It is interesting

are

FIG. 3-9.

to note that the selectivity of such a tube is relatively sharp. This

already suggests the possibility of sound filtration, which will be

later discussed in Chapter VII. Moreover, the parallel tube is

effectively a branch line, and this opens up the general problem of

1 See Rayleigh, Theory of Sound, Vol. II, p. 63.
2 G. W. Stewart, Phys. Rev. 31, 4, 696, 1928. It is interesting to note that the

incorrect theory was in the literature for almost a hundred years.
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transmission through a conduit with impedance in a branch, a topic

exhaustively discussed in Chapter V.

QUESTIONS AND PROBLEMS

1. Given a plane wave in a viscous fluid medium (take water)

of infinite extent. If its frequency is 1000 cycles, how far will it

travel before its amplitude is diminished in the ratio i/e? Solve

the same problem if the frequency is 20,000 cycles. Work the

same problem if the medium is air.

2. How would the results of Problem I come out if the same

fluid were confined to a rigid tube 2 cm in diameter?

3. Derive the formula (eq. (3-21))

P = -/Wxfmax COS

for the average transmission per unit area.

4. Why cannot a discussion similar to that in Section 3-5 be

used to determine the reflection at the open end of a conduit, i.e.,

where S\ = < in Fig. 3-1 and the wave is assumed to travel from

right to left?

5. What conclusion may be derived from Section 3-6 as to the

effectiveness of pinching a tube in order to reduce the intensity of

transmission? Will the discussion of this section apply strictly

to the case of a flat disc with a very minute hole inserted across

an acoustic conduit?

6. Deduce the resonance conditions for a conical tube closed at

the large end and open at the small end and compare with eqs.

(3-69) and (373).

7. Carry through the calculation of the power transmission ratio

for the Quincke-Herschel tube (Sec. 3io).
8. Discuss the application of eq. (3-62) (Sec. 3-6) to an expo-

nential connector and show where the analogy breaks down.

9. A piece of cheese cloth will stop the wind more effectively

than it will a sound wave. Assume that the speed of the wind

is 10 meters per second and that the sound wave of 500 cycles has

a maximum excess pressure of i dyne/cm
2
. Show by computation

why the viscosity in the cheese cloth apertures is more highly effec-

tive in one case than in the other.



CHAPTER IV

TRANSMISSION. CHANGES IN MEDIA

4-1. Change of Specific Acoustic Impedance at a Junction.

This section is devoted to the discussion of the transmission of

sound energy across the junction of two media. Let OO' (Fig. 4-1)

denote the boundary between the medium I of specific acoustic

resistance (see Sec. 3-1) R\ = POI^I and medium II of specific re-

sistance 7^2 = Po2^2- It will later be shown (Sec. 4-5) that for a

plane longitudinal wave in a solid we can also define analogously
the specific acoustic resistance. In this case also it proves to be

0'

FIG. 4-1.

the product of density and wave velocity. Assume that there is a

plane wave traveling from left to right from medium I to medium
II. Let the wave displacements of the incident wave and reflected

wave in I at the boundary be respectively

Atf** and Bie*"'

and that of the transmitted wave in II be

The boundary conditions are, as usual,

(1) continuity of pressure,

(2) continuity of volume displacement or of volume current.

94
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Consulting eqs. (3-41), (3'42)> (3*43) and (3-44), Section 3-5, we
have for these two conditions in the present case, respectively,

Ri(Ai + 5,) = RtJ* (4-1)

,A - Bi = A* (4-2)

Solving, we find

D * RI R\ j 7*12 i / x

Bi = A, p rr- = -A ~ -777, (4-3)
KZ -h /vi ri2 -r I

/ __ 2^ _ ^ 2
/ >

*

y/2 '*i b~v > -*i-; T' '4'4J*

wherein we have introduced ri2 = Rz/Ri to denote the relative

specific acoustic resistance of medium II with respect to medium I.

(Note the analogy with the reciprocal of the relative index of refrac-

tion of two media.)

The energy flow in the incident wave is proportional to (see eqs.

(1-47) and (3*60') with accompanying discussion)

while that in the transmitted wave is

R#>*
|
^2

1

2
.

Therefore the power transmission ratio is

Referring to eq. (4*3) it is seen that the reflected wave is /;/ phase
with the incident wave (both as regards displacement and pressure)
if 7*12 > 1

3
while the two waves are opposite in phase if rj2 < i.

Incidentally these facts have already been deduced previously in

Section 1-18, where the problem of reflection at a boundary was

treated without regard to transmission. From eq. (4*4) we now see

that the transmitted wave is always in phase with the incident

wave. It will also be noted that if r]2 > > i or r\i < < I, the

amplitude of the reflected wave is approximately equal to that of

the incident wave. In both cases practically all the incident energy
is reflected, that is, the transmitted energy is nearly zero. In the

first case the transmitted amplitude is very small, though in the

second case the transmitted amplitude is approximately twice that of

the incident amplitude. The latter case corresponds to passage
from a very dense to a very rare medium.
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The reader will recall (see Sec. 3-5) that the formula (4-5) is

identical in form with eq. (3-49) for the power transmission through
a tube with an abrupt change in cross section. The two would in

fact be identical if we set formally m = S%/Si = r\z = Ri/R\.

This formal analogy, which of course results from the similar bound-

ary condition equations in the two cases, will facilitate the ana-

lytical treatment of the transmission problems of this chapter.
An extensive table of values of specific acoustic resistance will

be found in Appendix I.

4-2. Amount of Reflection at a Boundary for Oblique Incidence.

In the preceding work the passage from one medium to another

has been assumed of such a character that the incident wave front

is parallel to the boundary. It will be of interest to examine briefly

the more general case in which the incidence is not normal but

where the glancing angle, 0i, differs from zero. The construction

of the refracted wave front has already been given in Section 1-8

(Fig. 1-7), and the law of refraction, namely, sin 0i/sin 2
= c\/c^ y

where c\ and c* are the velocities of sound in the two media respec-

tively, still holds. If the incident medium is a fluid, we need to

consider only the longitudinal wave in the second medium, because

the liquid can exert no shearing stress.

The boundary conditions are of the same type as those we are

already acquainted with, namely, continuity of pressure at the

boundary and continuity of the component displacement or particle

velocity normal to the boundary.
Let us consider a plane wave AE (Fig. 4-2) incident on the

boundary, which we take here to be the YZ plane whose trace on

the XY plane is of course the Y axis. The direction of travel is

indicated by the arrows and the angle of incidence is 0i. The
reflected wave front is CD and the refracted wave front in the

second medium is CE with angle of refraction 02- Strictly speaking
these are the traces of the wave front, which is taken perpendicular
to the XY plane. Let the original wave front passing through the

fixed origin be denoted by

tfi* + b\y
= o.

We may then denote the incident wave front AE by

a\x + b^y = K,

where the perpendicular distance between the two or the distance
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the wave has traveled from the initial position is thus

The expression for the velocity potential of the incident wave must
be in the form

where k\ = w/ri = 27r/Xi. Hence on substitution this becomes

Now since only the ratio b\ja\
= tan ^i is necessary to specify the

direction of the incident wave front, the magnitude Vi 2 + i
2

FIG. 4-2.

can be assigned any value we choose. It will be most simple to

set k\ = V^i
2 + b\

l
y whence the above expression takes the form

Incidentally, substitution into the wave equation vVt = <Pt'A
2

shows that this is indeed a solution if V#i
2 + ^i

2 be given the

above value. We then have

a\ k\ cos 0i, b\ = ki sin 0],

Now if we construct the reflected wave front by Huyghens' prin-
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ciple, it is found that we must represent the reflected velocity

potential by
<pr
= ^'M+'n-M].

This can be proved by actually determining geometrically the

equation of the wave front, but it is simpler to note that from the

diagram CD represents a wave front with components of motion

in the positive y direction but negative x direction. Finally, the

velocity potential in the refracted wave is represented by

wherein in analogy with the incident case we have

#2 v^2
2 + b^ cos 62

~
kz cos 62

and also __
h = \WJ + b? sin 2

=
2 sin 2 .

Tn the expression for <p t <>
the coefficient of y has been taken as b\^

as in & and <pr . The reason for this is that there must be no lateral

slipping of the wave fronts at the boundary. Or we can also note

that if we had assumed

we snould have
tf 2
= &2 COS 02 5

2
= kz sin 02.

But we have previously deduced

^i = k\ sin 0i.

Now from the law of refraction

sin 0i _ fi _ >h

sin 2 c 2 k\

Hence b^ b\. We now have to write down the boundary con-

ditions. Since p = p < (see eq. (1-13), Sec. 1-12), the pressure
condition is

^t + poi^r = pozpt at x o. (4-6)

Since = u = d<p/dx, the normal displacement velocity condition

becomes
c)< t dp, dpt f N
-r + = ~ at ^ = o. (4-7)

1
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These, on substitution, reduce to

respectively. Solving these equations we have

SA
=

whence
~

/ v

But a\ = k\ cos 0\ and #2 = ^2 cos ^2 as previously explained, and

k\ u/c\ and kz = M/CI. Recalling also the law of refraction we
have

B\ _ Po2/poi cot ^2/cot ^i
_

, .

^l P02/P01 + COt 6^2/COt 61
U

Now the incident and reflected displacement amplitudes may be

shown to be

4- r , ,i i .1
and T respectively.kc kc

For if we denote the component displacements along the x and y
directions by t and ij t, we find, since ;

=
dipi/dx and r)i

=
d<p l/dy,

that

CO CO

Hence the resultant displacement amplitude is

+

Similarly for the reflected wave. It therefore follows that the ratio

B\lAI in eq. (4*12) is also the ratio of the reflected and incident

displacement amplitudes. Consequently the fractional intensity

reflected is simply

1

= [pog/PQi
"" cot 02/cot 0i]

2

^

, x

[P02/POJ + COt 02/COt QlJ
' 4 J
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It is important to note that the frequency does not enter the above

equation, whence we see that it is equally true for all frequencies.

For normal incidence 0]
=

o, and we have simply

Bi __ P02/PU1
""

C\/Ci , ,

^i~pM/poi+*i~Ai' U 4;

reducing to the same expression derived in Section 1-18 (eq. (i'64)).

If the acoustic resistances of the two media are equal, i.e., if poi^i

=
Po2^2, then there is no reflected wave at all for normal incidence.

In the more general case of oblique incidence, for the angle Q\

such that

COt 2 __ P02 /

we also have no reflected wave. Combining eq. (4-1 5) with the

law of refraction, we find that this particular angle is given by

cot2
0i = r~- 1~7-r,

'

(4' j6 )

Po2~/Por cr i cz"

The existence of such an angle obviously depends on the condition

that we have

P02/P01 > Ci/C2 > I Or P02/POJ < C\/C2 < I,

that is, that ci/c* is intermediate in value between unity and po2/poi.

Further notes on this subject will be found in Rayleigh, Vol. II,

270. See also Chapter XII, Sections 12*1 and 12-3, for a dis-

cussion of total reflection in atmospheric acoustics.

4*3. Transmission through Three Media. We now consider

the normal transmission of sound through the three media I, II

Q

FIG. 4-3.
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and III across the boundaries 00' and QQ'. With the three media

will be associated the specific acoustic resistances /?], R% and RZ

respectively. At the first boundary we shall have for the incident

and reflected wave displacements in I:

i and

while for the corresponding waves in II we have

Atf^ and Btf 1
"'.

At the second boundary the corresponding waves are in medium II

Aner** 1*^ and B ze^ le^

and the transmitted wave in medium III is

if / is the length of the second medium and 2
=

co/r2 ,
etc. Calling

;*i2
= Rz/Ri and ;*2 s

= Rz/Ri> we have at the first boundary the

following:

(i) Pressure condition:

(2) Displacement condition:

A* - 5, = ^2
- B 2 . (4-18)

At the second boundary we have:

(i) Pressure condition:

(4-19)

(2) Displacement condition:

r** 1 - B 2e
lk* 1 - A*. (4-20)

The mathematical problem is the elimination of JBi, A^ 52,
to

express A$ in terms ofA i and so find the transmission ratio, which is

It is unnecessary to carry through the analysis, for it is formally
identical with that of Section 3-6. Hence the result will be eq.
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(3-61) with the substitution m\ = n2, ^2 = ^23, k = 2. We have,

therefore,

_4^2^23 I
/-

sm^

A study of eq. (4-22) reveals the following:
l

(i) If sin kit = sin 27r(//X 2) is nearly zero (where X 2 is the wave

length in the second medium), the power transmission is

= _4T13

indicating that in this case the transmission is independent of the

properties of the second medium. We note again the interesting

fact that the introduction of a third medium between two media

is formally equivalent to the introduction of an appropriate channel

in a pipe. This means that all that was said in Section 3-6 can be

formally applied here.

(2) If sin k>i/ 7^ o, the yield depends on the intermediate medium

only in the term (r23
2

i}(r\^ i) and we see that the presence
of this medium will increase the transmission only if (rJ2

2
i)

X (r23
2

i) > o. This means that R3 > R2 > RI or R3 < R2 < Ri,

i.e., that the specific acoustic resistance of the intervening medium
must lie between those of the other two media. Otherwise, the

transmission is decreased.

(']) If sin kj, = i, the power transmission becomes (see eq.

and this is unity if n 2 r<w or R\R* /? 2
2

- The general statement

also follows that for any three given media the yield is a maximum
or a minimum for sin kj = i or / = (in + i)\2/4, where n is any

integer (or zero). And indeed inspection of eq. (4*22) shows that

we have a maximum under these conditions if Rs > R% > Ri and

a minimum otherwise.

As an illustration, we may consider the transmission from water

to air. Here we have, for water, RI = 1.43 X io5

gm/cm
2

sec,

1
Eq. (4-22) and the essential equations of Sections 4*4 and 4-6 have been deduced

by H. Brillie, Le Genie Civil, 75, pp. 194, 218, 1919.
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while Ra = 42.6 in the same units for air. Hence ris = 42.67(1.43

X io 5
)
=

29.8 X icr5
. Hence without any intermediate medium

the transmission is only (see Sec, 4*1)

By using an intervening medium of specific acoustic resistance

R* = ^RiRs this transmission can be brought up to unity for wave

lengths X = 4//(2;z + i) (n any integer). Thus a glance at the table

of values in Appendix I shows that if rubber were used as the inter-

mediate medium this state of affairs would hold true approximately.
Of course the assumption has to be made that the rubber vibrates

like a true medium. If it does not, as it would not if it were short

in length, a membrane or plate, for example, the argument above

given is invalid. Whenever the medium vibrates as a whole, the

above method fails of application. For the statement made above

that when sin kj = o the transmission is independent of the prop-
erties of the intervening medium will be no longer true.

The problem of transmission of sound through two or three

media is of obvious importance in subaqueous signalling and the

results of this section will be used in the discussion in Chapter X.

4-4. The Stethoscope. The results of the previous sections of

this chapter and Chapter III may now be applied in the considera-

tion of the stethoscope, shown in generalized form in Fig. 4-4. The

__ __ T

1 2

FIG. 4-4.

area of the broad base is Si and that of the small connecting tube

*$V The stethoscope medium is called II and it is exposed to a
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medium I, the specific acoustic resistances being R% and R\ y respec-

tively. As usual we denote the incident and reflected wave dis-

placements in I at boundary I by St\e
lut and R\e^ 1

respectively,

while the corresponding quantities in II at boundary i are Atf*
and Btf"*

1
. The transmitted wave at 2 is Atf 1

. The application
of the usual boundary conditions then yields:

Boundary I :

(i) Continuity of pressure:

+ 52). (4-^5)

(2) Continuity of displacement:

A l
- B l

= A* - 52 . (4-26)

Boundary 2:

(1) Continuity of pressure:

Aie~ ik *1 + 52<?^ = A*. (4*27)

(2) Continuity of displacement:

Atf'^1 52
'*2* =

-TT A^ (4*28)
01

wherein /is the thickness of the chamber at the base and k% = 27r/X 2 ,

where X2 is the wave length in the stethoscope medium.

By the usual analysis we obtain finally

p _ \J*\*
*r

where m\ = *$V^i as usual. There is a phase difference between

the transmitted and incident wave. Thus if we write

A = P1

2
C *

we have at once

/, ^1^12 + i i i / \
tan 6 = tan k*l. (4*30)

If two stethoscopic receivers are used together (as in the application
of the binaural effect for direction finding, later to be explained) t

they must be matched for phase.
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If kj is made very small, we have for the power transmission

ratio

p _ in _ _
~ i. , n' r

~
'
~ ' U3U

This becomes unity for r\z = ;/;i. Let us examine this numerically
for the case of water as medium I, while the stethoscope medium
is air. Then for unit yield we must have approximately

^2 _ v 4

jr- 3 X 10
,

which means a ratio of diameters of about one to 60. But the

listening tube must be at least 3 or 4 mm in diameter and hence

the area of the base of the stethoscope would have to be too large

for practical purposes.
As a more practical illustration, let us consider a ratio of diam-

eters of base and tube of 15 to one. Then m\ = 1/225
=

4*44

X icr3
. Also ri2 = .3 X io~J

. For a wave length X of 44 cm,

corresponding to a frequency of about 750 cycles at o C and normal

pressure, and / = 0.03 cm, we find P, = .13, or the transmission

is about 13%. This thickness is rather small. If we take / = o.i

cm we find for the same remaining data

P, =
.024,

or the transmission ratio of about 2.4%. This, of course, is rather

small. But we may note that in the ordinary normal passage of

sound from water to air without change in tube cross section the

transmission ratio is only about 0.12% (see eq. (1*64), Sec. 1-18).

Hence the use of the stethoscope makes an increase in sensitivity
of some twenty times in the case cited. Here we again meet a

principle of very great practical importance in subaqueous sound

signalling.

It may be pointed out that the stethoscope as above described

is actually an acoustic filter, and is indeed a special case of the

general
"
tapered

"
transforming filter, recently discussed by W. P.

Mason. 1

4-5. Transmission of Sound in Solids. It is often desirable to

discuss the propagation of sound from liquid or gas to solids, as,

1 W. P. Mason, The Bell System Technical Journal, VI, 258, 1927. See particu-

larly part IV and compare with Chap. VII of the present work.



io6 ACOUSTICS

for example, the passage of sound from water to the hull of a ship.

This demands some consideration of transmission in solid sub-

stances, in general a very complicated problem, since it requires
a study of stress and strain in solid media. For the purpose of

the discussion of the present section, however, we can simplify
matters by considering merely the longitudinal motion along the

axis of a rod, where the transverse motions may be safely neglected.

Figure 4-5 shows a rod in the form of a rectangular parallelepiped
with its length measured in the x direction. Consider a slab of

Y
FIG. 4-5-

the rod of length dx at the distance x from 0, and let the stress

(force/area) in the x direction on the two faces be Xx and Xx

+ (dXx/dx)dx, respectively. The net stress in the x direction is

then (dXx/dx)dx> and the total unbalanced force on the slab in the

x direction is (dXx/dx)dxdydz.
The equation of motion of the slab is then

^
dx

Applying Hooke's law, we have

= Y,

dx

where Y is in this case Young's Modulus. Therefore the equation
of motion becomes

ri= Y^> (4*33)
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or the usual wave equation for propagation in the x direction with

wave velocity ^Y/p. Moreover we can define acoustic impedance
for such a longitudinal wave in a solid in a fashion wholly analogous
to that employed for waves in a fluid. This is a matter of some

importance in view of our assumptions in Section 4-1. Thus, just
as we defined the acoustic impedance in the case of a fluid (see

Sec. 2-3) as pressure/volume current, the analogous quantity for

longitudinal waves in a solid will be (negative stress) /area X dis-

placement velocity
=

( X^/S'% in our notation above. Now
from the equation of motion and (4*33) we have in the simple case

just treated

r ^ <

dx dx 2

or

The solution to eq. (4-33) is of course for a single wave in the

form
= o*

tCw|-fa
>,

whence

= ik and =
ico{.

Therefore (4^33^) yields at once

(-X,)/SS=pc/S9 (4-33*)

where c = ^Y/p y
the wave velocity. Comparison with eq. (3*5)

shows that the acoustic impedance in this case is of exactly the

same form as in that of a plane wave in a fluid, i.e., it is a resistance

only. Moreover, we can then define

(- X,)/t = R = pc (4-330

as the specific acoustic resistance of the longitudinal wave in the

solid rod.

In Appendix II we shall develop the general theory of elastic

waves in an isotropic solid. The chief results will be briefly set

down here. Since such a solid has both shear elasticity and volume

elasticity, a disturbance in it will in general be propagated by both

longitudinal and transverse waves. If the modulus of volume

elasticity is E and the shear modulus is n, the velocity of the longi-
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tudinal wave in a large mass of the solid is found to be

CL =
p

On the other hand the purely transverse waves set up by the torsion

of a cylinder, for example, travel with the velocity

(4-35)
* I*

always considerably less than CL.

The important thing to notice for our present purpose is that

as long as we adhere to normal incidence we can discuss the trans-

mission of sound from liquid or gas to solid in exactly the same

way as we have treated the case of transmission between fluid

media. In particular we now note the justification for the general
statement of Section 1-18 that there is a phase change of zero or IT

when a compressional wave is reflected when normally incident at

the interface of a solid and a fluid. For the fundamental boundary

equations of that section hold here as well.

For a fluid the velocity reduces, as we have already noted in

Section 1-12, to c = V^/p, and therefore the specific acoustic

resistance in this case is V^po.
In connection with the above it is interesting to note that the

seismic waves which occur in the earth are both longitudinal and

transverse. At the earth's surface these two types have velocities

which prove to be about 7.2 km/sec and 4 km/sec respectively,

agreeing in a general way with the discussion in this section. More-
over there is a more or less uniform increase in the velocity of both

types with the depth, so that at a depth of about one third the

radius of the earth, the values become 12.7 and 6.8 km/sec. There-

after they remain practically constant. For further details the

reader should consult Horace Lamb, Science, Vol. LXII, No. 1602,

4*6. Special Stethoscopes. We are now in a position to inves-

tigate the action of a stethoscope in which a third medium is

incorporated between the air and the water. For example this

might be rubber. In the usual way we assume that the specific

acoustic resistances of the three media are Ri y R% and R*. Consulting

Fig. 4*6, let the incident and reflected waves in I at boundary i

be as usual
i and
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and in II at the same boundary let the corresponding waves be

A2e
ltat and Btf'.

Also let the corresponding waves at boundary 2 in medium III be

1 and B 3e
lut

.

I 2 3

^ ^^ T III

Then the boundary conditions, pressure and flow, may be written

at once, as in the previous sections:

Boundary i :

A i + B\ = (A\ +

Boundary 2:

Boundary 3 :

53)r23 ,

(4-37)

+

where A\ewi is the transmitted wave through the tube and m\
= S*/Si 9 the ratio of tube cross section to that of the base of the

stethoscope.
The mathematical problem, as usual, is to eliminate the five

quantities B\ y A^ 5 2 , A^ 5 3 ,
and express A\ in terms of A to get

the transmission ratio. Solving the last two equations for A$ and

5 3 , we have
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Solving the second set, we have

(4-40)

2
= -\_At(r

-
i) + B3(rM + i)]-*-*

(
*.

Whence

^2 = -e** i(mi + i) (m + i )**' + (i
-

i,) (r23
-

i )-*.]
4

and

52
= V'*'[(wi + i) (r23

-
i)*

1** 1' + (i
-

mi) (r23 + i)*-*'.].
4

Finally solving the first two for A\ and B\,

Ai = i[//(ri, + i) + 52 (ri 2
-

i)],

(4-4 1 )

Bi = i[^2 (r12
-

i) + 52(r12 + i)],

or

A, (4-42)

-j- <?-*'.[(;! + l)(r23
-

iV'*'"'
3

Let us now make the simplifying assumption that 2/2 = (in + i)

7T/2 where n is an integer, or /2 = (272 + i)-X2/4, where X2 is the

wave length in the second medium. Eq. (4-42) then reduces to

(4-43)

~
|i(rn

Then on further reduction

~
/[(win 2 + r23) cos >& 3/3 + i(ru + Wjr23) sin kj{\. (4-44)
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The power transmission ratio is

r23)
2

T (i
- ^i'

2
)(ri 2

2 - r23
2
) .

2
, ,

H 7 :

TTJ
SIFT 3/3

r23)
2

Now if sin 3/3 is very small the power transmission ratio reduces to

?*! 27*23

and this equals unity for ^in 2
= r23 ,

or

mi
si TV"

If for example the media I, II, III are water, rubber and air respec-

tively, we have

S2 = (14) X (.004) X io8 _
S l (5)

2 X io

whence the ratio of the diameters will be about 0.5 or as one is to

two. It must not be forgotten, however, that the assumption
2/2 = 7T/2 has introduced a selectivity, and it is only for certain

wave lengths that we have the unit transmission. The same is

true of the assumption that sin 3/3 is very small, though since lz

is generally very small the selectivity introduced by this condition

is not so pronounced.
It will be of interest to examine the value of Pr for the case

where we do not assume sin 2/2 = i, in order to see iust how great
is the selectivity introduced by this assumption. If we keep e** 1

*,

etc., in the expression above, we finally obtain after considerable

reduction

^i = f[C+/D], (4-47)

where

C = (ri2r2a + Tflj) cos 2/2 cos kj* (n 2 + m\r^ sin 2/2 sin 3/3 ,

and

D =
(^1^12 + r23) sin 2/2 cos 3/3 + (^iri 2r23 + i) sin 3/3 cos 2/2 .
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The power transmission expression in its general form is rather

complicated but for our purpose here it will be sufficient to develop
it for the case where 3/3 is very small, since that is the case of

general interest. We then obtain

2 , ,

COS tf2*2

=
r

This expression reduces, of course, to eq. (4*46) for sin 2/2
= I.

For the case of water-rubber-air under the optimum condition

m\r\<i = /23 the formula reduces to

P, =
T^rirn* (4>49>

j _j
L
2
. COS2

2/2
47*12"

Now in this case we have

ri2 = Rz/Ri =
.036,

whence

pr==
*

1 + 192 cos2
2/2

It is evident that, due to the large magnitude of the coefficient of

cos2
2/2> the selectivity is very marked. Thus if we consider as a

special case a thickness of rubber of 1.67 cm, while for a frequency
of 750 cycles unit transmission occurs, for 600 cycles the trans-

mission drops to about 5%.
It is clear that the special stethoscope described in the section

will be of little advantage where a broad range of response is nec-

essary. On the other hand, where fairly sharp and selective response
is desirable it may prove extremely valuable. This point will be

further emphasized in Chapter X in connection with submarine

signalling.

Attention should again be called to the filtering characteristics

of the stethoscope (see the last paragraph in Sec. 4-4).

QUESTIONS AND PROBLEMS

1. In what respect does the discussion of a stethoscope fail if

extended to unlimited areas?

2. Can the discussion of Section 4-3 include a medium II which

is very thin?
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3. Explain in physical terms the significance of the fact that,

when a sound wave is incident normally from a dense medium to a

rare medium, the transmitted amplitude is approximately twice

the incident amplitude.

4. Find the condition for total reflection when a sound wave is

incident on the interface of two media (Sec. 4*2).

5. From the discussion in Section 4*2 derive the expressions
which are equivalent to Fresnel's equations for the relative intensity

of light reflected from the interface of two media. Show that

Brewster's law is satisfied (see Houstoun, Treatise on Light, 1915,

p. 191).

6. Discuss the formula for the power transmission ratio for

sound passing through three media (i.e., eq. (4*22)) by ascertaining

the behavior of dPr/dl and d2Pr/dP for various values of /. Repeat
this for the corresponding stethoscope formula (eq. (4-29)).

7. By means of the relation between the elastic constants Yy

E and n, express the velocity c ^Y/p in terms of the velocities

CL and CT (Sec. 4-5). Discuss from a physical point of view the

difference between c and CL*



CHAPTER V

TRANSMISSION THROUGH A CONDUIT WITH AN ATTACHED BRANCH
OR AN OPEN END

5-1. General Theory of a Side Branch. We now consider the

general theory of the influence of a side branch on the transmission

of sound through a conduit. In the figure (Fig. 5-1) there is rep-

FIG. 5-1.

resented a conduit AE of uniform cross section S with a side branch

C which may be open or closed and is arbitrary in nature. We have

already discussed a special case of this general problem in the

Quincke tube in Section 3*10. We wish to indicate here a general

solution applicable to all cases.

Let the pressure in the plane wave incident from the left at the

junction, where the branch is located, be pie*. Let the reflected

and transmitted pressures in the conduit at the same point be

fre
iat and p te***. Let the pressure in the branch at the junction,

which is the same as j& <*****, be represented for convenience as pbe'.
As usual, the phase differences are taken care of by the possibility

of pr and p t being complex. If we can find the ratio of ft to pi,

we can get the power transmission simply as

(5-0
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since the intensity in a plane wave may be expressed as p
2
/poc

(Sec. i -15) and the conduit suffers no change in cross section. The

problem will be solved by setting up the boundary conditions

expressing the continuity of pressure and volume current at the

junction. For these we have

pi + pr
=

pb
=

ft, ,.
Xi Xr

= Xb + Xty

if we denote volume current amplitudes by X with the appropriate

subscripts. Now making use of the formula p = PQC
ZS (Sec. 1-12)

and the fact that for a plane wave s = X/Sc, where S is the area

of the wave front, and writing Zb
= pb/Xby

where Zb is the im-

pedance of the branch at the junction point, we finally have for

the second of eqs. (5-2) :

pi
- p r)

= pb/Zb + Sp t/pocy (5-3)

which, since pb pt> becomes

S/p QC-(pi pr)
=

pt(l/Zb +

Moreover, from the first of eqs. (5-2) we also have
/> t pr

=

ipt p ty and hence on substitution there results

pt/P*
= i/(i + poc/*SZb). (5-4)

The branch impedance will in general be complex; we therefore set

Zb Zbi + iZbZ) and substitute into (5-4). Rationalization of the

denominator and a simple reduction lead to the following form for

the resulting power transmission :

Z6i
2 + Z*>2

2 xv

This, then, is a general equation independent of the exact nature of

the branch, and shows that an increase in
|
Zb

\
serves to increase /V

For a branch in which Z&i = o (i.e., no acoustic resistance), the

transmission reduces to

Pr
=

i/(i + poV/4^2
262

2
), (5-6)

while, if Z&2 = o (no acoustic reactance), we have

Pr
=

i/(i + poc/SZbi + poV
2/4^i 2

). (57)
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The general theory is illustrated by special cases in the following
sections. 1

52. The Helmholtz Resonator as a Branch. As an application
of the theory of Section 5-1 we proceed to consider the Helmholtz

resonator as a side branch of an acoustic conduit, as in the accom-

panying figure (Fig. 5*2). There is no dissipation of acoustic energy

FIG. 5-2.

at the opening to the resonator, and therefore if we neglect vis-

cosity, we have for the branch Z\ = o and from Section 2-3

Z2 = Mco i/coC, where M is the inertance of the opening and

C is the capacitance of the resonator chamber. From Section 2-3

we note that the inertance may be written as

wherein CQ is the "conductivity" of the opening. For a neck of

length / and cross section S
y this quantity should be (see Sec. 2-3)

e, = S/l. (5-9)

But the actual mass of the moving fluid in the opening is never

wholly included in the length /, and hence in general <TO must be

expressed as described in Section 2-4 (eq. (2*34) and accompanying
discussion). This means that we shall have

(5-10)

1 The theory of this section is a modification of that used by G. W. Stewart.

See Phys. Rev., 26, 688, 1925. Equation 5 in this paper is algebraically equivalent
to our more simple formula (5-5).
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where is a number which is usually between ?r/4 and TT/I depend-

ing on /. For an end opening into an infinite plane (/
=

o), ft

approaches ?r/2 and Co == 2a for a circular orifice. Since C V
'/'po^

2
>

where V is the volume of the chamber, we have for the power
transmission ratio (Sec. 5-1, eq. (5*6))

In the above no attention has been paid to the influence of the

viscosity in the orifice. In introducing this we shall make the

assumption that the effect of the viscosity is equivalent to that in

a channel of length /. Now if we have a viscous fluid moving in

a tube of such a character that the layer adhering to the wall is

small compared with the diameter, the equation of motion l may
be written in the form

poXdx + (l + i)/a-^1iJLpouXSx = Sdp/dx-dx y (5*12)

wherein the first term on the left denotes the kinetic reaction of

the fluid in a layer of thickness dx
y
the second term denotes the vis-

cous drag on the fluid and the right hand side denotes the ordinary

hydrostatic force due to the difference in pressure on the two sides of

the layer. In this equation p is the mean pressure over the area in-

side the neck and X the mean volume displacement. The quantity

JJL
is the coefficient of viscosity (see Sec. 3-3) and S = wa2

. Now if the

length / is short, we may without great error assume that X and

dp/dx are constant throughout the length of the channel, and for

the total force per unit area on the gas in the neck we have

IpoX/ira* + //W-(i + i)\
r2^X = -

Idp/dx. (5-13)

We now have
-

/dp/dx
=

/>b
- pc*x/r, (5-14)

where pb is the excess pressure at the orifice to the resonator (see

the previous section) and p^X/V is the pressure exerted by the

resonator due to its acoustic capacitance f^/poc
2

. The total im-

pedance of the resonator is pb/X and we may calculate it from eq.

(S' l 3) d we recall that the volume displacement is of such a form

that

jr=fYojf. (5-15)

1 See Rayleigh, Theory of Sound, Vol. II, p. 318.
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Substitution into eq. (5* 13) then yields

(5-16)

Whence we have for the impedance components

Zi = acoustic resistance = l/ira* Vs/ipow, (5* 1 ?)

Z2 acoustic reactance

if we substitute <r
=

*$Y/, the conductivity of the orifice of the reso-

nator. From (5*13) and (5*18) we see that the acoustic resistance

arises entirely from the viscosity and vanishes for ju
=

o, or for a

sufficiently wide orifice in comparison with /, the length of the

equivalent channel. So far as the acoustic reactance is concerned,
we note (see eq. (2*20), Sec. 2*3) that the effect of the viscosity is

to add a small term to the inertance of magnitude equal to the

acoustic resistance or to subtract the same from the original capaci-
tance of the resonator. To calculate the effect on the actual

transmission it is necessary to substitute from (5'iy) and (5*18)

into eq. (5*5) of the preceding section. In the computation the

one uncertain point lies in the value to be assigned to cQy the con-

ductivity of the orifice, and in any particular case the actual value

of j8 to use in eq. (5-10) must be chosen with a certain unfortunate

degree of arbitrariness.

The comparison of theoretical with experimental results has

been made 1 in two cases with results indicated in Figs. 5-3 and 5-4.

The first figure applies to the case of a conduit of cross sectional area

1.59 cm2 with a branch resonator having an orifice 0.4 cm in diam-

eter with a chamber volume of 35.7 cc. To calculate the conduc-

tivity CQ, the value ft
=

7r/2 is used, whence with / = 0.015 cm
we get CQ = 0.382 by the application of (5io). The full curve in

the figure is plotted using (5-11), since it is found on examination

that the additional viscosity terms in the impedance will not alter

the results materially for a fairly wide range of values of / in the

vicinity of the actual length of the channel. Note that the orifice

is here rather wide. The circles on the plot show the experimental
values of the transmission, given at the left in terms of the usual

fractional notation and at the right in the new decibel (dV) notation 2

*G. W. Stewart, Phys. Rev., 27, 487, 1926.
2 The transmission curves in the text to follow will in general express Pr in both

notations, due to the growing importance of the latter scheme.
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(see Sec. 1-15). The agreement is rather striking, showing as it

does that the resonator seriously influences the transmission for

more than an octave either side of the resonance frequency. This

is the more surprising in view of the relatively great sharpness of the

resonator response when used in the open. This is shown by the

dotted curve in the figure, wherein the ordinates are the values of
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FIG. 5-3.

the amplification of the resonator as given by eq. (2*22) in Section

2-3. It is to be noted that the comparison of sharpness is made

between two different measures of the effect of the resonator, both

of which are in use.

To show the effect of viscosity a resonator with much smaller

orifice was used with results indicated in Fig. 5-4. The chamber

volume was reduced in order to bring the resonance frequency

(without viscosity) to approximately the same value as in the

previous case. Curve a is the curve obtained using eq. (5*11)

(i.e., disregarding viscosity), while curve b is based on the more

general expression (5-5) with the impedance components (5-17) and
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(5-18) inserted. In the computation the value JJL
= 0.00018 has

been used and / has been taken as 0.09 cm or six times the actual

length of the orifice. This seemed to be the value which best

fitted the experimental results and a change of 10% results in a

noticeable inferiority in the agreement. In any case the effect of

the viscosity is well marked, particularly in the increased minimum
transmission.

5-3. The Orifice as a Branch. If the Helmholtz resonator is

replaced by a simple orifice, we must modify the expression for

the difference in pressure acting on the mass of air in the opening.

That is, instead of pb p Qc
2X/^ (see eq. (5-14)), we have now the

form pb po^co^f/2, wherein the second term is the back pressure

due to the radiation from the orifice (see Sec. 2*3, following eq.

(2-13)). If now we substitute this quantity into the eq. (5-13),

we have finally

= pb,

whence for the impedance components we obtain
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This shows that the acoustic resistance is made up of a viscosity

term and a radiation term. The acoustic reactance is now an

inertance, but accompanied by a viscosity term also.

The results of experiments on the transmission with an orifice

present are summarized in the accompanying Fig. 5-5. Four
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FIG. 5-5.

orifices were used l with radii running from 0.05 cm to 0.30 cm. The
cross section of the conduit was 1.59 cm2

, and the channel length

remained constant at 0.015 cm. The conductivities were calcu-

lated by the formula (5*10) already given above, and using
=

Tr/2.

It was found that applying the expressions for the impedance

components to eq. (5-5), Section 5-1, the viscosity terms made very
little difference in the result. From the curves it is seen that for

reasonably small orifices the theory agrees well with experiment.
But for larger orifices the agreement breaks down, as is evident

from curve 4 in the figure. An arbitrary increase of the conduc-

tivity from 0.582 to 0.74 brings close agreement. This indicates

1 G. W. Stewart, Phys. Rev., 27, 492, 1926.
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that for large orifices the conductivity formula needs revision.

Indeed the experiment may be looked upon as a means of calculating
the conductivity in such cases.

To test the influence of the radiation from the orifice on the

transmission the calculation was repeated, using Z\ = o instead of

the value given by eq. (5-24). The result (for the case of curve 5

in Fig. 5*5) is shown in the figure (Fig. 5-6) in the dotted curve.

Frequency

FIG. 5-6.

It is clear that the influence of the radiation is very small even at

relatively high frequencies. This is, of course, what one would

expect from the fact that

27T
< <

for ordinary frequencies and particularly in the experiment here

considered (see also Sec. 2*2).

We may summarize the results of the above discussion thus.

First, orifices in a conduit diminish the transmission ratio, the

diminution decreasing with increasing frequency of the sound.

Second, neither viscosity nor radiation seriously affects the trans-

mission in the cases cited. Third, the diminution in transmission

is caused not so much by loss in energy in radiation as by the

Inertance of the orifice which produces a reflected wave. These last

two results have an interesting bearing on the action of musical

instruments having keys. Thus for an instrument with but one
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control orifice (such as, for example, a clarinet with but one key
lifted) much more of the energy in a single wave passing through
the tube will emerge from the bell than from the orifice. But, of

course, there will always be waves in both directions. Also we
must not press the case too far, for a clarinet with several keys
lifted constitutes in effect an acoustic filter (see Chap. VII), and
in the latter case the sound emerging from the bell may be less

than that from the holes; what is even more interesting, it may be

of different quality. There is a great difference between the simple
case of transmission and the more complicated case of resonance

(i.e., that due to the reflected wave from the bell), which always

plays a role in such instruments. The action of a clarinet, flute or

similar instrument is very complicated and has not been quantita-

tively analyzed.

5-4. The Cylindrical Tube as a Branch. It is the purpose of

this section to derive the expression for the values of Z\ and Z2

B
FIG. 57.

for any length of tubular side branch, open or closed. Substitution

into eq. (5-5) of Section 5-1 will then enable us to compute the

influence of such a tube on the transmission through the conduit.

Let us consider the side tube C of constant cross section S. If we

take the x axis along the axis of the tube, the equation of motion

along the tube is, as usual,

wherein X = *$*. Since X is harmonic in the time with frequency
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CO/27T, and a steady state is assumed, the eq. (5-22) becomes

r)2 V"

|^ + *2*=o, (5-23)

where k = u/c as usual. The general solution of (5*23) may be

put into the form
X = (Ae** + Ee-^e^ (5-24)

corresponding to waves in both directions along the tube. A and

B are the arbitrary constants, to be evaluated by the boundary
conditions, and are in general complex quantities. From eqs. (1*14)

and (i'26) 5 p poc
2
/S- (dX/dx) and we have, omitting the varia-

tion with time,

p = - ikptf*/S-Ae** + ikPQc*/S-Be-
ik

*. (5-25)

If now (for simplicity) we let x o at the point where the tube

joins the conduit and x /at the other end (which may of course

be open, closed or attached to some other conduit), we have the

following four boundary equations:

X = A + B
y

Xl
= Ae^ + Be-* 1

,

fl
= -

The complex impedance at the conduit end will be denoted by
Z =

PQ/XQ. That at the other end is Zi = pi/Xi. The problem
we are to solve is to express Z in terms of Zi and /, so that when
these two are known, ZQ may at once be obtained and the power
transmission through the conduit evaluated. Since XQ

=

etc., we have from the first and third of eqs. (5-26)

Z = - kp*/ S- -
(5-27)

Moreover from the second and fourth equations there results

(/f/R-/> )kl />-'*'}

Zt
= - W/coJ-

(
**' ^ > (5>28)

whence we solve for A/B and find

. /D e~*kl(-
AIE = "^
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Substitution into the eq. (5-27) for ZQ now yields upon reduction

v L 2/0 f iuZiCos k/ kpoC~/S'sin kl 1
,

.Z = kpoC
2
/S- -rr .77-7;

-LT-~^7 = T/ 5 (5'30)
L twkptf

2
/S'COS kl u zZi sin kl ]

D '

which is the desired relation. When the tube is attached to the

conduit as indicated, there must be added to the value of Zo above

given the impedance of the orifice at the junction. In the case at

hand this is a pure inertance and therefore has the value /pow/ro,

where CQ is the conductivity of the orifice. The value of Zt will ob-

viously depend on the nature of the other end of the tube. If the

tube is open and has an infinite flange, we shall have simply

Zi = pouk/ZTr + ipow/Coi, (S'3 1 )

where poco^/2?r is the radiation resistance due to radiation from the

opening, and CQI is the conductivity of the opening (so denoted to

distinguish it from <:<), the conductivity of the attached end of the

tube). In this it will be noted that the frictional resistance due

to viscosity is neglected. The justification for this procedure is

obtained from the considerations of the preceding section.

If now we substitute into the expression for ZQ above and write

ZQ Zoi + lZu2j

we have
Zoi = PoCo/27rD, (5-32)

os 2/ , (5-33)

where

D = cos2 kl + k*S*(k
2
/47r* + i/fo*

2
) sin 2 */ - kS/cor sin 2*7. (5-34)

If the tube is closed at the end, we have Zi = co. From our

expression (5*30) it therefore follows that

Z = -
ipoc/S-cot kl + /pow/Vo, (5'35)

whence in this case

Zoi = o and Z 2
=

Poco/r p<>c/(S tan kl). (5-36)

With the substitution of the above values into the general

expression for the power transmission (eq. (5*5) of Sec. 5*1) we get
formulae from which calculations may be made on special cases.
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As usual, the difficult quantities to estimate theoretically are the

conductivities CQ and co/. For the conduit end of the tube perhaps

the safest formula is

T*/4), (5-37)

where L is here the length of the orifice channel. In this case L
is so small compared with a as to be usually quite negligible. Hence

practically CQ = \a. As regards the open end our only ultimate

resource is the actual experimental values. Thus from Barton,

Textbook of Sound (p. 251), we take CM =
5-50.

-20

The comparison between the calculated and experimental results

is shown for two special cases 1 in Figs. 5*8 and 5-9. The first of these

refers to a closed tube 8.55 cm long with a 0.397 Cm 5
t 'ie area f

cross section of the conduit being 1.59 cm
2 as in the experiments de-

scribed in the preceding section. The ordinates are the square roots

of the transmission as calculated by the eq. (5-5) of Section 5-1. The
circles represent the experimentally determined values. There is a

two-fold difference. First, the experimental points do not come
down to zero at the resonance frequencies. This is due to the

viscous resistance already discussed in connection with the Helm-

holtz resonator (Sec. 5-2). Second, the computed points are dis-

placed toward smaller frequencies, which may be accounted for by
the fact that the value chosen for CQ (= 4^) is too small. The

1 G. W. Stewart, Phys. Rev., 27, 494, 1926.
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dotted minimum curves are computed for r =
> and the correct

curve should fall somewhere in between. The reason that we ought
not to expect the value Co = 40 to give the right result is that this

is evaluated on the basis of a tube open to the air, while we are

applying it to the case of a tube opening into a conduit. The
increase in the resonance transmission with increasing frequency,
which is very marked in the experimental points, is undoubtedly
due to viscosity, the effect of which increases markedly with the

frequency.
In the second figure (Fig. 5*9) are presented the results of an

investigation of an open tube 17-1 cm long with the remaining data

as in the previous example. Due to the greater length the viscosity

--53

-20

Frequency

FIG. 5-9.

effect should be larger and the presence of radiation from the open
end will work in the same direction. This is what the curves

indicate. The dotted line shows the transmission that would be

expected in the conduit if / = o and we had merely an orifice instead

of the resonating tube. This makes clear the essential difference

between the two cases.

5-5. Acoustic Radiation from an Open Pipe. This is an appro-

priate point for the discussion of the general correction to the length
of an open pipe. In our elementary discussion of tubes in Section

2*5 it was assumed that at the open end of a pipe the excess pressure
remains constantly zero, that is, that we have there a loop. This

is never exactly true because of the radiation of sound energy from
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the opening. The presence of this radiation involves the existence

of excess pressure, which therefore means that there can really be no

loop at the end. It is our present problem to discuss the amount
of this radiation. Consider the pipe in Fig. 5-10 with diameter la

\
t

i

i

i

i

FIG. 5-10.

small compared with the wave length and with the open end fitted

with a theoretically infinite flange to insure radiation only in the

right hemisphere. The velocity potential at a point in the hemi-

sphere to the right of the flange will be, if we consider O f

as a point
source of spherical waves,

Ve = (5-38)

as we note by consulting eq. (1*35) of Section 1-14. It therefore

follows that the particle velocity is

dr
L'= _

J'/f*. + ikr). (5-39)

Let us now consider the mass of gas in the region bounded by the

plane section through O (to the left of which the waves are plane),
and a hemispherical surface with center at O' and radius r', where
la < r' < < X. Within this space, which is much less than X in

extent, the gas will move more or less as an incompressible fluid.
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The volume current X across the hemispherical surface will be

lkct

(5-40)

if we neglect terms of the order of V 2 and higher. Note that this

implies that r'/\ < < I/ITT. In the inside of the pipe the velocity

potential will consist of two terms, one for waves in the forward

direction and the other for waves in the backward direction. We
may therefore write

c*i ei+*\ (5-41)

The volume current across the section at o, if we let x = o there, is

(J - B), (5-42)

where S = ira
2

. From the assumption that the gas in the region

under consideration moves as a whole we therefore have

iSk(A - B) = 2*v*'. (S'43)

But the volume current through this region is proportional to the

difference between the velocity potentials at the two ends, and the

coefficient of proportionality is the conductivity of the channel

(see Rayleigh, Vol. II, pp. 172-173). Hence

- dirA'e tkct = * (*.
- *0, (5*44)

where <pc is the value for r = r
1 and <pt is the value for x = o. That

is, making the substitution,

ivA' = c,(A + B- A'/r'-r**). (5-45)

Now eliminate A' between the eqs. (5-43) and (5*45) and we have

on reduction, neglecting c^/iitr' compared with unity,

fl - _ .0 -
7T

-
i

-
o

(
,.

[^0
2
(I + ^2

/27r)
2 + JV]

"

^5 4 ^

The ratio of the reflected intensity to the incident intensity is

given by | JS|
2
/|^I

2
(see Sec. 3-6), and the ratio of the dissipated

or radiated intensity to the incident at the end of the tube is
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I
| J3| Vl-^l

2
- Hence the dissipation ratio, as we may call it, is

(5-47)

after some reduction. This can be put into somewhat more con-

venient form if we substitute for k its equivalent, 27T/X, and S = ira
2
y

and also assume <TO
= 2#. Then_27TVVX

2

^5
'4 ^r

(1/2 +

But since a < < X, the formula reduces for all practical purposes to

Dr = 87T
2
fl
2
/X

2
. (5-49)

Thus if tf/X
= 2/100 we get Dr

= 3.2%, while if a/\ 4/100 we

get Dr
= 12.8%. We must be careful to apply neither eq. (5-48)

nor eq. (5*49) to cases where a is too large a fraction of X. For

under the latter conditions the reasoning leading to formula (5-4?)

breaks down.

It is interesting to note that if the flange be removed we get
less dissipation. We may get the approximate value of the dissi-

pation without the flange if we neglect the influence of the flange

on the value of CQ. For in the absence of the flange, the flow from

0' will be nearly spherical and the volume current will then be

approximately

instead of ivA'e lkci as formerly. If we carry this factor of 2

through the above reasoning, we arrive finally at the approximate
value

Dr
= 4T

2 2A2
(5-5)

corresponding to 87r
2^2

/X
2 under the same conditions except with

the flange present. This conclusion at first seems strange. Surely
the opening to the free air would permit the wave to escape more

easily than when a barrier (a flange) is imposed! But it is the

increase of the area that causes reflection. A continued tube would

give complete transmission at this point. Even in a case not within

the limits of the assumptions the above results indicate how small

an amount of sound energy is dissipated from the open end of a

pipe the radius of which is small compared with the wave length.

Incidentally by the application of the Helmholtz reciprocal theorem
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(see Sec. i-n) the fact may be established that if we have a source

of sound at a point outside a pipe satisfying the above conditions,

only as much of the sound energy from the source will get into the

pipe as would come out of the pipe and reach that particular point
if the same source were in the pipe. Thus in general a small

opening is very inefficient either for the entrance or egress of sound.

The foregoing discussion shows that as a is decreased in size the

dissipation is relatively less. Assuming that we remain within

the limits of our assumption that a/\ is very small, it is easily seen

that an increase in a increases the radiation and that if one desired

to get radiation out of a pipe one should increase the diameter

of the opening. But if this is done suddenly a reflection ensues.

The result of such qualitative considerations would lead one to

build a flaring or bell-like end if radiation is desired. The trans-

mission from inside out or vice versa is thereby increased. Used

as a receiver the funnel-shaped end acts not so much to collect

the sound as to supply easier ingress.

QUESTIONS AND PROBLEMS

1. Discuss from a physical point of view the influence of an

orifice as a branch and in particular explain why the transmission

through a conduit with this kind of branch should increase with

the frequency.
2. Estimate from physical considerations the effect of (a) a pin-

hole orifice, (b) a very narrow short cylindrical tube. Using the

material of Sections 5*1 and 5*3, carry through the calculation in

the case (b) to find the transmission.

3. What are two objects in having flaring ends for speaking
tubes ?



CHAPTER VI

DISTRIBUTED ACOUSTIC IMPEDANCE. HORN THEORY.
ACOUSTIC COUPLING

6-1. Impedance Theory of Tubes and Horns. Let the accom-

panying figure (Fig. 6-1) represent a tube or conduit of varying
cross section and with diameter small compared with the wave

length of the sound supposed to be passing through it. From this

assumption it follows that the phase will remain approximately
constant over every plane perpendicular to the axis. Consider a

FIG. 6-1.

thin lamina of thickness dx and area of cross section S. Its mass is

pvSdx if the mean density is po. The excess pressure at the left

hand boundary is p; that at the right is p + (dp/dx)dx 9

Whence the net excess pressure in the x direction is (dp/dx)dx,

corresponding to a force of S(dp/dx)Jx. The equation of motion

of the layer is then given by

*~- dx
dx

or

:_ <>P
(6-1)

if we denote the displacement in the x direction by , as usual. It is

desirable, however, to get an equation involving p alone and

another involving alone. To do this it is necessary to employ the

equation of continuity (Sec. 1-12 and eq. (1-9)) according to which

the difference between the flow into the lamina and the flow out of

132
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it per second is equal to the time rate of increase in mass of the fluid

inside. The amount of the influx over the efflux is

while the rate of increase of mass of fluid is

Whence the equation of continuity may be written

^P. (6-2)

Now from the definition of the condensation s (see Sec. 1-12), we
have

P = PO =
"2 P (6'3)

since/)
= p A (eq. (1-14)). Therefore we get

>. (6-4)

Expanding and substituting p = p (i + s) by the definition of

condensation, we have, neglecting po$t;(ds/dx) as compared with

dx) and pos(dS/dx) as compared with

Differentiation with respect to the time yields

PO^(^)=-^. (6-6)

But from the equation of motion we have

i= -L,5
Pod*

whence there follows on substitution

*

+ !. ^. = 2.
dx^ S dx dx c2
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Ifp is a harmonic function of the time with frequency aj/2?r
=

i.e., the tube is excited by a harmonic vibration of this frequency,
the above equation becomes

Pp
,
d(lagS) dp+ j.--+kp- . (6-8)

We can get a corresponding equation in by looking back to eq.

(6-5), integrating with respect to the time (putting the constant of

integration equal to zero by the appropriate choice of time origin),

and differentiating with respect to x. But this step is unnecessary
for our present purpose.

We may summarize briefly the fundamental assumptions which

have led to the eq. (6-8).
1

They are as follows:

I. The cross-sectional area S < < X2
.

II. The fundamental acoustic equations are applicable.
III. Both and p are everywhere analytic functions of time and

space so that we can interchange the x and / derivatives.

IV. The walls of the tube are rigid; there is no displacement in a

direction perpendicular to the axis.

V. and s are both so small that we can neglect S(ds/dx) com-

pared with <V(d/d,v) and pQs compared with po

It is not to be supposed that all these assumptions are realized in

practice. The point is that only by using them is a reasonably

simple solution possible. Moreover, the results of the theory are

sufficiently in accord with the observed behavior of horns to cast

considerable light on these phenomena.
2

The complete solution of eq. (6*8) will be found in Appendix III.

It suffices here to note the result, which is that the pressures and
volume displacements at the two ends of the horn (indicated by

subscripts I and 2 respectively) are related by the equations

pz = apt + bXi, (6-9)

(6.10)

1 In connection with the use of the equation of motion (6-1) it might at first be

thought more correct to write (using force instead of pressure) po$ = d($p)/dx,

which yields a result differing from (6-1) by the term p/S-dS/dx. In general, the

absolute value of this term will be small compared with \dp/dx\. But in any case this

"extra" pressure really acts on the walls of the tube and hence gives rise to transverse

motions. Our fundamental approximations have neglected these motions. Hence we

should be inconsistent in introducing this term without at the same time revising

completely the original assumptions to take account of the components ^ and f. For

this reason we fail to agree with the method of M. O'Day (Phys. Rev., 32, 328, 1928).
2 The above theory is that of A. G. Webster, Proc. Nat. Acad. Sci., 5, 275, 1919.
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where 0, ,/, g are functions of the x values for the two ends of the

horn and the areas of cross section at the two ends. Exact general

formulae for these quantities, whose special values depend on the

kind of horn used, are to be found in the Appendix just quoted.

Let the terminal impedances be Z\ and Z2 . That is, let

7Zl y
2
~ (6-1 1)

Now Zi can be expressed in terms of Z2 or vice versa. For if we

solve (6-9) and (6io), we get

But since p2/X%
= /<*>Z2 ,

the above becomes

Similarly we obtain
/WZi + b

(6-13)

(6-14)

Whence if we know the impedance at one end of the horn, we can

calculate that at the other as soon as we know a, b,fy g. We are

now ready to apply the results of this section to the important

problem of the amplification of a horn.

6-2. Amplification of a Horn. Consider the horn indicated in

Fig. 6-2. Its shape is arbitrary and it is represented as a cone

merely for the sake of sim-

plicity. The theory of the

preceding section tells us that

if we know the pressure and

volume displacement in the

horn at either end, we can

compute by (6*9) and (6io)

the corresponding quantities

at the other. For example, FIG. 6-2.

if the horn is excited at the

small end (denoted by i), we can calculate p z and Xi at the large

end and from these in turn can obtain the energy radiation from

the opening if we treat the latter as a simple orifice with impedance
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I

~l

7T <T

which is, of course, an approximation, implying the presence of a

flange on the opening; see Section 5-3 and eq. (5-31) of Section 5-4.

In the present section, however, we wish to consider the horn as a

receiver of sound originating at a distance and approaching the

large end. When a steady state is established, there will be at the

end 2 an excess pressure p$ due to the incident sound alone (i.e., the

pressure which the incident sound would produce at this point if

the horn were absent) and an excess pressure p z due to the fact that

the horn is present and is excited by the incident radiation. The
former pressure corresponds to a volume current towards the

opening, while the latter corresponds to one out of the opening.
The net volume current out will then be

In turn there will be produced at the small end of the horn an excess

pressure pi, depending on the value of ,Y2 above, and we may take

as a measure of the amplifying power of the horn the ratio p\lpz*
The calculation of this quantity is as follows: Noting

l that p2/X%
= /2> we have

Y Z,iX<L p 3 p3 ,f>
xxA 2

=-
y
-~ =

? r,
'

(6-16)
/>() ^2 ^0

But from the general theory in Section 6-1 (eq. (6-10)) we also have

X*=fpi+gXi
or

A'8 = i<*ffl + p, (6-17)
^i

1 The reader must be careful not to confuse Z2 and Z . The former is simply the

general expression for the impedance at the end 2 and its value will depend on the

behavior of the horn (i.e., whether emitting or receiving) and on the attachment to this

end, while the latter refers strictly to the end considered as an orifice. In the present
case as

/>3
= 0,^2 = Zo. It should be pointed out that Webster, to whom the above

theory in its original form is due, considered Z as a two-point impedance rather than

the usual point impedance of acoustics. As a matter of fact it is given the latter

significance in all applications of the resulting formulae and hence the theory has here

been developed accordingly.
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where Z\ = pifXi as in Section 6-I. 1 We may therefore solve for

pi and get

We should like to eliminate the Z2 from the above expression.
This may be done by employing eq. (6-14) of Section 6i, whence we

finally obtain on substitution into eq. (6-18)

in terms of the characteristics of the horn (as given by a, /,/ and g)

and terminal impedances Z and Zi. The ratio p\lp* may be called

the pressure amplification of the horn. The intensity amplification
is more important, and will be given by |^i|

2
/|/>3|

2
(see Sec. 5'i).

Applications of eq. (6-19) will be made in sections which follow.

6-3. The Cylinder and Cone. The case of a cylindrical tube has

already been treated separately in Section 5-4 as a branch to a

conduit, but we shall now show how it follows easily from the general

theory laid down in the previous section. Here is constant and

eq. (6-8) reduces to the form 2

By the method indicated in Appendix III, we find for the constants

of the cylinder
a cos k(%2 KI) cos kl>

b -
| sin*/, (6-2 1 )

/ = ~
^

sin /,

g = cos kl,

where / = #2 #1 is equal to the length of the tube and $ = kc2
p .

1 In the unusual case of end i being open also, we should take account of the

pressure />3 there as well. However, even in this case, due to its small relative value, it

may be safely neglected.
2 Since in eq. (6-20) p is considered as a function of x only we might better use

total rather than partial differentials. It is believed, however, that the reader will

not misunderstand the present notation. The same remark applies to eqs. (6-25)

and (6-33).



138 ACOUSTICS

The impedance then becomes from (6-13)
Q

/co cos kl Z2
--~sin kl

Zl = _____-*--
(6

.M)
-- sin / Z2 + /co cos kl

p

Suppose that the end denoted by x 2 is an orifice. Then (see eq.

(5*20) and (5*21) in Sec. 5-3 and note that we here neglect the

viscosity effect entirely), we have

where CQI is the conductivity of the orifice. It is of interest to notice

that in our discussion of the cylindrical tube as a side branch we
deduced a formula (eq. (5-30)) for the impedance at one end in

terms of that at the other end, which is identical with our eq. (6*22)

except that we used previously Z and Z_ in place of Z\ and Z2

respectively. Of course Section 5-4 is really a special case of our

general treatment. Substitution of Z2 from eq. (6-23) into eq.

(6*22) then yields an expression which is identical with the second

term in eq. (5-33) (i.e., all except the term pooo/Vo). We refer to Sec-

tion 5-4 for the details.

The conical pipe was investigated in Section 3-7. We now
examine the application of the general method. We have

S = $<#*,

whence

and the eq. (68) becomes

+ - + p - o. (6-25)* Jx

The fundamental constants, calculated in the usual way (see

Appendix III) are, placing kxi = tan kti and kx2
= tan ke2 for

simplicity,
sin /\ xi sin k(l + 1)~ = -^-~-'-

sin

x\ (
a = I cos

x2 \

b = -T^- sia */, t, ^,^
Six* (6-26)

sn

__

sin kei sin

sin k(I e 2)

sin ^c2
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Substitution into eq. (6-14) of Section 6-1 yields

-(4)
. fm Olll

tuZi*
sin

sin (/+6j 2) ,
i<*& sin k(l 2)

sin ei sin e2 *S\ sin ^62

If the conical tube is closed at the end corresponding to x = #2, we
have Z2

= > and hence

i& sin kei sin k(l c 2) ,
-- -

sm

that is, the impedance of the other end is now a pure reactance. On
the other hand, if the large end is an orifice, we may set, as before,

~r~

27T

The resulting Zi is very complicated, containing both resistance

and reactance components, and will not be set down here. In any
case we are usually more interested in the amplification produced by
the horn as a receiver, from which expression Z2 has disappeared.
Thus we have from eq. (6*19)___l3

aZi + 6/i<*
-

ZoO'w/Zi + g)
'

wherein the appropriate values of 0, ,/, g from eqs. (6-26) must be

inserted. The above can be written

(6-29)P+ -r-^- gA

and it appears to be most simple to consider a conical horn with the

small end closed, so that Zi = <*> . Incidentally, we note that if the

horn is used to amplify sound for the ear so that the small end is

inserted into the ear this assumption is practically realized. Under
this condition the amplification reduces to the simple form

sn + 1) ,

^ /oy Zo

(6-30)

sin kei ft sin kei sin ke z

(---Y
\ 2T cm )



140 ACOUSTICS

o



DISTRIBUTED ACOUSTIC IMPEDANCE 141

after making the substitutions for a and/ and using

ZsQ
~

~T~
"

27T CQI

If the vertex of the horn is closed, we must put Xi = o in (6-30),

which then takes the form

FIG. 6-4.

sin kxz . sn
sin ke<

^Lt'lL- JL\
2 \27T CQI)

(6-30

The influence of the value of Xi (i.e., the distance of the cut-off from

the vertex of the cone of which the horn is a frustrum) on the

amplification is shown in the diagram (Fig. 6-3), presenting curves
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computed with the use of eq. (6'3o). (Note, however, that the

ordinates are values of |/>i|
2
/|/>3|

2
.) The increase in the intensity

amplification for the resonance frequencies as x\ is made smaller

(i.e., smaller end) is very marked, particularly for the overtones.

The influence of the horn ratio (that is, the ratio between the

length of the horn and the diameter at the large end) on the ampli-
fication is well illustrated by the above diagram (Fig. 6-4) in

cm.

Horn Length

FIG. 6-5.

which
|/>i|

2
/|/>3|

2
is plotted as a function of horn length for three

different ratios. As is of course evident from an examination of the

eq. (6-30), the horns with greater ratio show a greater amplification

throughout almost the whole range of lengths and in particular in

the neighborhood of the lengths corresponding to resonance at the

given frequency (256 cycles).

Experiments on the performance of conical horns carried out by
one of the authors l are in tolerably good agreement with the theory
as above presented. The accompanying figure (Fig. 6-5) indicates

the nature of the agreement between experimental and theoretical

results when a conical horn is used as a receiver. The ordinates are

values of
|/>i|

2
/|/>3|

2
, while the abscissae are horn lengths in centi-

meters. The full line curve represents experimental results for con-

ical horns of constant horn ratio cut off with a very small vertex

(radius 0.25 cm), the intensity measurements being made with a

Rayleigh disc (see Sec. 8-4, Chap. VIII). The dotted curve repre-

1 G. W. Stewart, Phys. Rev., 16, 313, 1920.
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sents the theoretical values computed from eq. (6-31), which strictly

speaking implies #1 =
o, but should be a very close approximation if

Xi is sufficiently small. The quantitative agreement is not par-

ticularly good though the trend of the two curves is the same.
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Fio. 6-6.

Reference should be made to the original article for further

details, but we ought to call attention here to the important fact

indicated by the experiments that actually there exists an optimum
horn ratio or horn angle for a horn designed to resonate at a certain

frequency. That is, if conical horns of various angles, all con-

structed to resonate at a given frequency, are used successively as

receivers of a given train of sound waves of this frequency, one horn

of optimum angle will give the greatest amplification. The

optimum angle will depend on whether the fundamental is excited

or an overtone. It will be noted that the theory of this section as

expressed in eqs. (6*30) and (6-31) indicates no optimum angle but
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rather an increase in amplification with an increase in the horn

ratio or decrease in horn angle. But in getting (6-30) and (6-31) we

assumed the small end to be closed and Zi = oo. If this is no

longer assumed, but it is postulated that energy dissipation can take

place at the small end as

well as the large end, and

that when a steady state

is established the energy

input into the horn is equal
to the energy output from

both ends, a theoretical de-

duction shows clearly the

necessity for the optimum
x angle. This has been car-

ried through by Hoersch. 1

It will be shown in Sec-

tion 6-7 that an important
measure of the amplifica-
tion of any horn both as a

receiver and as a transmit-

ter is to be found in Z i,

the real component of the

impedance at the small end
FIG. 67. or throat of the horn. In

this connection the accom-

panying figure (Fig. 6-6), showing the result of measuring both the

real and imaginary impedance components at the throat of the

horn, is interesting. The method by which the measurements were

made is described in Section 8-2.

We should note here the variation of Z i (in the figure denoted

by Zi simply) with frequency, and the fact that it attains its maxi-

mum value slightly in advance of the resonance frequency in each

case. The reader should compare this curve with the corresponding
ones for exponential and hyperbolic horns of similar dimensions in

Sections 6-4 and 6-5.

6-4. The Exponential Horn. The exponential horn is one for

which the cross sectional area is governed by the equation (see Fig. 6-7)

J= S

1 V. A. Hoersch, Phys. Rev., 25, 225, 1925.

(6-32)
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Then since log S = log Sa + tux, the pressure equation becomes

If 7 = V>&
2 w2

/4 and / = #2 #1, we have in the usual way (see

Appendix III) for the constants of the horn

1

I 09

I

a = e~ (mI/2) sin yl + cos yl >

I
27 J

-<
AS 17

/=

[--'"siL 27
sin 7/ + cos 7/

Evponential Horn
r . 303 cm
<X*.120 cm.'

L-257 cm.

(6-34)

200 E

150 f
too I

Frequency

FIG. 6-8.

Substituting into the pressure amplification expression eq. (6-19) of

Section 6-2 and considering the small end closed, so that Z\ = co,

we deduce
/ i

isjsi
m .

7 , 7 ,

^2/^
2
/ /* i \ -

;
sin 7/ + cos 7/ H )

sin yl
27 7 \27T CQlJ

(6-35)
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There is a peculiarity about the exponential horn which has

given rise to considerable discussion. The general solution of the

differential equation (6-33) is

p = ,-</2)[^<i+74 + j&,-7*)] f (6.36)

where 7 = V^2
;

2
/4 as above. That is, there are two pressure

waves in opposite directions, each travelling with the phase velocity

where k = w/c as usual. Now as k = mji y
the phase velocity

approaches infinity ,
and for k ~ m/i there is no imaginary term

involving x, the phase then becomes and remains the same at all

parts of the horn and there is no longer any wave motion at all in the

horn, a conclusion startlingly at variance with the fact that we know
that the horn will actually transmit low frequencies. Moreover,

according to the theory we are using it is only a horn of exactly the

exponential type which shows this peculiarity. It is difficult to

believe that in practice the solution should be so sensitive to slight

changes in shape as occur for example in going from a Bessel horn L

for which S Sox to the exponential horn, which is the limiting

case of that type as m grows very large, when we consider that no

such discontinuity arises for the former type of horn. We are

therefore forced to conclude that the nature of the approximations

underlying Webster's theory here introduces a spurious result. It

is probable that a more accurate horn theory would indicate the

presence of wave motion in the exponential horn for all frequencies.

The exponential horn of infinite length has been studied by
Hanna and Slepian,

2 while Ballantine (loc. cit.) (as has already been

noted) has investigated mathematically infinite horns with the cross

section equations 8 iSVv"
1

, the so-called Bessel horns, the shape of

which in the limit of very large ;;/ approaches that of the exponential
horn. The value of this work seems somewhat limited in view of the

great influence of reflection in the finite horns actually in use.

Mention should here be made of the article on loud speaker horns

by Goldsmith and Minton.3 This contains much in the way of

1 Stuart Ballantine, Jour, of the Franklin Institute (203, 85, 1927).
2 Hanna and Slepian, Trans. A. I. E. E., 43, 393, 1924.
3 A. N. Goldsmith and J. P. Minton, Inst. Rad. Eng., 12, 423, 1924.
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experimental data and theory which is essentially equivalent to

that presented in this text.

The figure above (Fig. 6-8) presents interesting experimental
evidence of the superiority of the exponential horn over the conical

horn in the measured values of Z i (called Z\ in the figure), the real

component of the impedance at the throat of the horn. These

measurements have already been referred to at the end of Section

6'3 and a curve presented there for the case of the conical horn

The corresponding curve for an exponential horn of similar dimen-

Fio. 6-9.

sions shows clearly larger values ofZ i, indicating greater amplifying

power, as will be shown in Section 6-7.

6-5. The Hyperbolic and Parabolic Horns. The hyperbolic horn

shown in diagrammatic form in Fig. 6*9 has its cross-sectional area

governed by the equation

S = Jo*-*, (6-37)

being a special case of the more general form S = SQX
H

. The

general pressure eq. (6*8) then takes the form

dtp 2 dp
Ic'Tx (6-38)
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Proceeding in the usual way, we find for the constants of the horn

sin kl
,
#2Kl

, ^2 77
tf = 1

COS kly
kxi Xi

b = -
j~r [sin kl - kl cos kl +

ri

/

sn

kx] cos ^/ sin

(6-39)

FIG. 6-10.

The pressure amplification calculated on the assumption of Zi

and

,+
27T
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turns out to be

sin*/ .v2

-
*.V.v2

-
,

*.VB sin*/ (Tk
-

T\
1

-- CQS / -|_
.--- ---

Xi x*xi \'27r CM/

(6
'

4o)

Computations made with this equation as a basis indicate that

the hyperbolic horn is superior to the conical horn of similar di-

mensions. However, it should be emphasized here that experiment
does not indicate much choice between flaring horns. As long as

there is a flare, the exact law of change of cross section does not

seem to be particularly important. This is doubtless connected with

the approximate nature of the horn theory used, which perhaps tends

to put undue theoretical emphasis on certain factors.

It is of some interest, however, to consider the measurement of

the real impedance component at the throat of a hyperbolic horn as

indicated in the figure above (Fig. 6io). This should be com-

pared with the corresponding curves for the conical and exponen-
tial horns (Figs. 6-6 and 6-8). The Z i values afford a measure of

the horn efficiency.

Very recently Olson and Wolff 1 have examined on the basis of

the theory of this chapter the -parabolic horn for which

S = S&.

They have calculated ^i//> 3 as above and have found very good agree-

ment with the values obtained experimentally by means of a con-

denser microphone (see Sec. 8-7).

6-6. Conductivity as a Correction to the Length of a Tube.

In Section 5-5 of the previous chapter there was discussed the

radiation of sound from an open pipe, and the influence of this on

the effective length of the pipe was mentioned. We shall now
examine this in detail, using the general methods of this chapter.
We shall use a cylindrical tube open at one end and closed at the

other. If the closed end is at x = #1, we have Z\ = <, and there-

fore eq. (6' 1 9) of Section 6-2 becomes

1 H. F. Olson and I. Wolff, Journal of the Acoustical Society of America, i, 410,

1930.
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Referring to Section 6-3, we have for the case of the cylinder

(eq. (6.21))

a = cos k/y f =
-Tjsin

k/y

whence, making the substitution and putting for Z the expression

appropriate for an orifice, we have

+ .

cos kl + [

--- sin kl
\ 27T CQI )

S being the cross-sectional area of the tube, / its length and CQI the

conductivity of the opening. Now for an ordinary circular orifice,

CQI is of the order of la, where a is the radius (see Sec. 2-4). But one

of the fundamental assumptions underlying this present chapter is

that la < < X. Hence, la < < lir/k and therefore k/2ir < < I/CQI,

whence 2
/2?r may be neglected in general in comparison with k/Coi.

Therefore, we may drop the imaginary term in (6*42) and say that

to a good approximation pi/pa will have a maximum for that

frequency for which

kS
cos kl -- sin kl o. (6-43)

CQI

Since kS/c i (which equals ir
2
a/\ approximately) is very small, we

can write the above in the form

kS j , . kS .
, ,

cos cos kl sin sin kl = o
CQI CQI

or

cos (/ + )
=

o,
\ CQI/

whence the condition becomes

where n is any integer or zero. That is,

This is the revised form of the resonance condition for a tube closed at
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one end and open at the other. As we recall from Section 2-6 the

simple uncorrected condition is

The quantity S/CQI then represents the end correction and / + S/CQI is

the true acoustic length of the tube. For certain purposes (see

Sec. 2-4) it is valuable to define CQI in terms of this end correction.

Thus,

QI TT ;
--

:
- '

End correction

This gives us a valuable means of measuring CQI experimentally.

6-7. Application of the Reciprocal Theorem to Receivers and

Transmitters. The reciprocal theorem of Helmholtz has already
been stated and applied in Section i-n. It will be of advantage to

apply it to the horn. Briefly, it says that a source of sound at a

point A will produce at a point B the same velocity potential both as

regards magnitude and phase as would be produced at A were the

identical source transferred to B. Now the strength of a source

of sound may always be measured by the value of the volume

current X at the source. Two sources are thus equal if their X
values 1 are equal both in magnitude and phase. This is the

definition of equal sources as used in Helmholtz's theorem. Let

there be a source X at the vertex of a horn. The average power

output at the vertex is

P =
%pmax-Xm*x COS 6, (6-46)

where the substituted values are maximum real values of excess

pressure and volume current, and is the phase difference between

the two. Now the maximum velocity potential and consequently
the maximum excess pressure at a point distant from the horn will

be proportional to ^^pm^Xm^ cos 6 (see eq. (1-50) of Sec. 1-15).

Suppose that there is an equal source X at the distant point. Then
the maximum pressure at the vertex due to this source will also be

proportional to ^^pm^Xm&K cos by the reciprocal theorem. If the

source is constant the maximum excess pressure at the vertex will be

proportional to Vi|Z| cos B by the definition of the impedance Z;
refer at this point to eqs. (3-14), (3'2o), (3-22), and (3-23) of Section

1 See Rayleigh, Vol. II, para. 294,
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3-2 for the verification, noting that |Z| means the absolute value of

the impedance at the vertex. But |Z| cos 6 = Z i (Sec. 3*2), where

Z i is the real part of the impedance at the vertex. Hence, the

maximum excess pressure at the vertex is proportional to VZoi and
the intensity of reception is proportional to Z i- But when the

same source is at the vertex, the output is also proportional to Z i

from eq. (6-46). Hence, Z i is a measure of the amplification of the

horn, both when used as a transmitter and as a receiver, and we see

that a horn which is a good transmitter will also be a good receiver.

Naturally, the amplification will de-

pend on the kind of attachment used

at the vertex. This will be studied

in detail under acoustic coupling in

Section 6-8. But we can note here

the influence of the most simple kind

H of attachment, namely, that shown
in the figure (Fig. 6'ii), in which

the diaphragm D is made much

larger than the vertex orifice of the

horn and is separated from it by a

small air space. We know from our

pIG> 6-11. study of the stethoscope that sound

incident on D may be transmitted

with greater power transmission through the small hole than if the

hole were not there. We may, therefore, expect that when the

diaphragm is made to vibrate a larger .Y will be produced at the

opening to the horn than would be produced were the chamber not

there. This means a larger output.
It is interesting to note that recently W. Schottky (Zs. f. Phys.,

36, 689, 1926) has made use of the general principle of reciprocity to

discuss the emission and reception of sound radiation by sound

sources and receivers respectively. In particular, he has proved
the following theorem: any sound radiator whose motion is linear

and determinable in terms of one coordinate will absorb from unit

solid angle of an incident uniform spherical wave of length X and at

distance R from the source an amount of energy which is smaller in

the proportion \2
/R

2 than the amount which it itself is capable of

sending per unit solid angle in the direction of the source. That is,

while the ratio between the reception and emission efficiencies is the

same for any given frequency, this ratio increases with the square of
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the wave length, so that low frequencies are relatively better received

than emitted, i.e., the reception favors the low frequencies.

Schottky calls this the law of "depth" reception (Tiefempfang).
6-8. Acoustic Coupling. Optimum Diaphragm Output. We

have already mentioned in Section 6-7 the possible influence of an

orifice attachment on the output of

a diaphragm. Such an attachment

may be, for example, the cap of a

telephone receiver or the horn of a

loud speaker. Let us consider the

problem in greater detail. We shall

not specify at first the exact nature

of the attachment. The effective

area of cross section of the dia-

phragm will be denoted by *S*i, while

the opening into the attachment will

have an area of <92 . The thickness

of the air layer in front of the dia-

phragm will be /. This layer will be cylindrical in form. Let Zi

be the impedance at the diaphragm and Z2 that at the opening
into the attachment. Using now the theory of Section 6-1, we
write again (6*22), viz.:

FIG. 6-12.

/coZ2 cos kl ^ sin kl

Z2 sin kl + /co cos kl

(6-47)

Now set

and

= Z2
' + /Z2

"

- Z/ + /,".

On making the substitution and rationalizing the denominator, we

finally have for the real part of Zi

rr t _ P
Zi ~ Z2

'

where

D = AL [z2
'2 + z2

"2

] sin2 + 5S COs2 U - Z2
"

sin a*/.
Oj
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Now the power output of the diaphragm is

P = COS 6 = i COS

(6-49)

since Z/ is the real part of Zi. If the diaphragm were radiating into

open air through an opening of the same size as the diaphragm, the

power output would be given by

(6-50)
r> 2 -~~ /C.A max ~

2 2 27T

where /? is the dissipation coefficient (see eq. (2*19) in Sec. 2-3), or

in this case the radiation resistance of the opening. Hence, the

ratio of the output with the attachment to that without the attach-

ment and no reduction in cross-sectional area, becomes

27rZ/ 27rZ2
'

(6-51)

on employing eq. (6-50) above.

____ Coming now to some detailed ap-

plications, suppose that the attach-

ment is an infinitely long cylindrical

tube, as in the accompanying figure

(Fig. 6-13). We have Z2
" =

o, since

there is no inertia component at 2

(i.e., no body of air which moves as

a whole). Moreover Z2', the resist-

ance component at 2, is that due to a plane wave at 2. There is no

opening in the air at 2, and we are neglecting viscous resistance.

Hence

FIG. 6-13.

where *?2 is the area of cross section of the cylindrical tube. Substi-

tuting into the above amplification ratio (6-51), we have for the

latter

27T

i + sin2
*/-

(6-52)
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The smaller /, the larger the ratio, and for kl extremely
small the ratio varies inversely as <V2 . This then gives a

measure of the amplifying value of the attachment.

With the orifice open to the air as in Fig. 6' 14 we
have

n= ---
1

-------
,

lir Co

where Co is the conductivity of the opening. Substitution

yields for the amplification ratio pIG

Po
~

-
2

sn2 k+ cos2 kl~ -- cos */ sin

If we suppose that / is so small that we can put sin kl = kl and

cos kl = i, we get

wherein we have neglected ^2
/4 7r

"2 as compared with i/fo
2
(see Sec.

6-6). This ratio will usually be greater than unity, for except for

very large values of Si we shall have

2k2
/ . S^P> ;;

.

Co C (?

because of the extreme smallness of k2
//co.

Without going into details in the case where the attachment is a

horn we can yet understand the amplifying action of the horn when
we recall that for a horn Z2

7
will be relatively large, as has been

indicated in the results of impedance measurements discussed in

Sections 6*3, 6-4 and 6*5. Then the amplification ratio for / very
small will be practically proportional to Z% '. (See eq. (6-51) and

note that D reduces practically to PQC/SI.)

It must not be forgotten that the theory of this section is

approximate to the extent of assuming that the Armax of the dia-

phragm is not changed by the joining of an attachment such as

those described. While this is never true in practice, yet the above
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gives a not too complicated picture of the effect of the attachment

and is to this extent justifiable.

6-9. Mechanical-Acoustic Coupling. Illustration. In practice

it is often necessary to couple mechanical and acoustic elements.

This necessity arises, for example, in the problem of phonographic

reproduction where the mechanical vibrations of a needle point
have to produce reasonably undistorted acoustic vibrations in the

air. This matter has been very thoroughly worked out by Maxfield

and Harrison * and it is our aim here to discuss some features of

their analysis, in order to supply a concrete case.

The reproducing system is schematically indicated in the

following diagram (Fig. 6- 15),* which shows the needle point and arm

(c\T\m\c3), the spider attachment (ctfHzCz),

the corrugated diaphragm (c^m^) y
the air

chamber of the horn (c-jTz) and the throat

of the horn (Z/,). With regard to the

symbols, m represents effective mass and c

mechanical capacitance or "compliance
"

as

the above authors call it. The letter T
denotes the coupling of one type of oscilla-

tion with another; in the case of TI the

coupling is mechanical with mechanical, in

the case of Tz the coupling is mechanical
FIG. 6-15. w j tn acoustical. The aim is to deduce an

equivalent electrical network for every mechanical-acoustical sys-

tem present. It is not our purpose here to follow this procedure in

detail. But it will be valuable to examine briefly a special case and

for this purpose we shall choose the air chamber between the dia-

phragm and the horn. We have the following notation:

mz = effective mass of diaphragm in grams,
A\ = equivalent area of diaphragm in cm2

,

f6 = compliance of the edge of the diaphragm,
Ci = compliance of air chamber, = acoustic capacitance in

our previous notation,

AI = area of the throat of the horn,

ZA = impedance of horn.

1
J. P. Maxfield and H. C. Harrison, Bell System Technical Journal, 5, 493, 1926.

2 Taken from the above article, as is Fig. 6-16.



DISTRIBUTED ACOUSTIC IMPEDANCE 157

(Note that the latter is defined by the authors as

*

-
.
-

= -.

particle velocity

instead of p*
-

, which has been used throughout this text.
volume current

To avoid confusion, we shall retain their definition in this section.)

i
=

displacement of diaphragm,
2
=

displacement of air in the horn throat,

F force applied to diaphragm,

p = excess pressure in the air chamber.

The procedure now is to write down the equation of motion of the

diaphragm involving the inertia force, the restoring force due to the

compliance of the diaphragm and the restoring force due to the

compliance of the air chamber. Next the force equation of the air

in the chamber is written down. This is strictly only the equation

defining Z/< as above. After some reductions and assuming harmonic

displacements, these equations become respectively

where

i / '

Zi = / I o>;;/ 3
--- -

Y COAi CO^;

0*7

Now examination of the following electrical network (see Fig. 6*16)

shows that the differential equa- m CfJ

tions giving the sinusoidal currents o /TEffOWflff^U i
\

Ii and /2 in terms of the character- //" Ar Jbc-L*,/2

istics of the network are of form

identical with the acoustic equa-
tions above for the particle veloci-

ties. In fact we can write, if E
denotes the impressed E.M.F.,

where

=
o,

-'(*--
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These five equations give the complete solution of the electrical

network and hence the complete solution of the analogous me-

chanical-acoustical problem. Mathematically there is nothing to

choose between the two sets of equations. But the fact that the

theory of electrical networks has been so extensively studied and is

now very familiar to electrical engineers, renders the use of the elec-

trical equations rather more efficient in practical computation. It

ought to be emphasized very strongly, however, that this analogy of

mechanical-acoustical and electrical networks is valid only to the

extent that the corresponding differential equations are similar.

Our main point here has been to show how in problems of acoustic

coupling, as in problems of electrical coupling, the main thing is to

transform force equations into impedance equations, the interpre-

tation of which then becomes immediately clear.

It is well to suggest that the apparent practical gain in the use of

analogous electrical equations may prove a detriment to the most

rapid progress in anyone's appreciation of acoustic phenomena. The

corresponding electrical phenomena are in reality much less concrete.

Acoustics deals with gross matter and can be visualized more readily,

and the physical action in acoustics is much better understood.

Therefore an acoustician might profitably endeavor to think in

acoustic terms rather than electrical. The electrical analogies may
sometimes be advantageous in mathematical procedure but, in the

long run, not in physical interpretation.

QUESTIONS AND PROBLEMS

1. Using the horn theory of the text, deduce the expression for

the pressure amplification of the horn whose cross section obeys the

law S = SQe'ax\

2. A conical horn with large end open is to be used as a branch in

an acoustical conduit. Considering the impedance of the open end

to be that of an orifice, calculate the impedance of the throat.

3. Using the result of the preceding problem, calculate the power
transmission ratio through the conduit as affected by the conical

horn used as a branch.

4. Discuss the theory of an infinite conical horn.



CHAPTER VII

THE FILTRATION OF SOUND

7-1. General Considerations. Simple Methods of Filtration.

In the previous sections of the text we have met illustrations of the

filtration of sound. Thus it was found that the Quincke tube

(Sec. 3'io) acts to eliminate the transmission of sounds of definite

frequency, namely, those for which the difference in length of the

two parallel branches is an odd multiple of X/2 and those for which

the sum of the two branch lengths is equal to any integral multiple of

X (subject to a certain subsidiary condition which may be referred

to in the section cited). The tube is highly selective in contrast to a

filter that removes a relatively large band of frequencies.

Frequency

FIG. 7-1.

In Section 3*6 it was found that the insertion of a channel in an

acoustic conduit, whether constricting or expanding in nature,

renders the conduit selective. It suffices to recall the general

expression for the power transmission Pr (eq. (3'6i)) to note the

dependence on the frequency. Experiments have been carried out

to check this effect. The following figure (Fig. 7-1) shows the

comparison between the theoretical and experimental results in the

case of a constriction 1.08 cm long and 0.5 cm in diameter in a

conduit 1.43 cm in diameter. The progressive falling off in the

transmission as the frequency increases is clearly evident. The
difference between the curve and the experimental points is probably
due to the omission of viscosity in the derivation of the formula.

'59
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As a matter of fact, inspection of eq. (3-61) shows that if the range

of frequencies were increased the transmission curve would display

a series of peaks alternating with hollows, the former corresponding

to the frequencies for which sin kl = o. The diagram presented

here thus shows only the low frequency part of the actual behavior

of the tube. It will be noted that the transmission is at no place

reduced actually to zero. In Fig. 7-2 are presented the results of

Frequency

FIG. 7 2.

an experiment with an expansion channel 2.24 cm long and 4.76 cm
in diameter in a conduit of the same diameter as that mentioned

immediately above. There will be noted a failure to transmit more

than 5% over a frequency range from 2000-6000 cycles. But again
the transmission is not reduced even approximately to zero and the

variation of intensity near the selected frequencies is not rapid. In

this case, also, extension to higher frequencies would show an

alternate series of peaks and hollows.

In Chapter V we also noticed the selective effect of the Helmholtz

resonator used as a branch (see Fig. 5-3). But the selectivity is not

very marked except over a narrow band of frequencies. Experi-
ments on an orifice as a branch give results of a similar nature, in

particular showing reduced transmission at low frequencies. But

again the filtration is only partial. On the basis of these results it

might be supposed that placing several selective devices in series

(i.e., successive orifices, etc.) would introduce greater selectivity.

An experiment was performed to illustrate this point. In a conduit

0.556 cm in diameter, branch orifices of diameter 0.15 cm were

placed 1.5 cm apart. The transmission curves are given in Fig. 7-3.

For a few orifices in line there was no startling improvement, as is

indicated in curves //, B and C. But an increase in the number of
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orifices to eight brought about a fairly complete cut-off of the

transmission below 2600 cycles while for higher frequencies the

transmission rose to 80% or more. It seems clear that a really new

phenomenon is involved here, needing more detailed study in a

Freauency

FIG. 7-3.

somewhat different manner from that hitherto employed in dis-

cussing transmission problems. Historically, this study developed
in the manner related in the following section, having been suggested

by the theory of the electrical wave filter, and not by any acoustic

experiments.

7-2. Theory of the Acoustic Filter. In this section there will be

developed a formal theory of acoustic filtration. 1 We shall begin
with certain definitions and assumptions. An acoustic line is

defined as a bounded region forming a tube or channel and capable
of transmitting sound waves in the direction of the tube or channel

only. The accompanying diagram (Fig. 7-4) is a schematic

representation of an acoustic filter in the form that will be studied

here. The acoustic line is AG^ here taken as a portion of an infinite

line. Herein are inserted in series the equal impedances Zj. At

the points A^ Cy E, G, there are branch lines AB, CD, etc., containing

the equal impedances Z2 . For the present we shall define as a

1 This is the lumped impedance theory first presented by G. W. Stewart, Phys.

Rev., 20, 528, 1922. More recently W. P. Mason (Bell Tech. Jl., 6, 258, 1927) has

developed a more general theory, the equivalent of which will be presented in Appendix
IV. The results of both theories will be freely used in the following sections.
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section of the filter the portion between A and C, or C and Ey etc. In

order that a negligible change of phase may take place in each

section so defined, we shall make the assumption that the length of

each is small compared with the wave length, the same applying to

each branch length, also. Later a more refined definition of

section will be given. The branches will be assumed to terminate

in a volume of gas otherwise at rest, so that the pressure at all the

termini is approximately the same and in value zero excess pressure.

H

These are the only general conditions imposed. The impedances Zi

and Z2 are thus far arbitrary, and we have to investigate the specific

conditions they must satisfy in order that the line may possess

filtering properties.

We make the following further assumptions:

(1) The volume current at any part of the line will always be

expressed by Xe*, where X is complex.

(2) The acoustic impedance will be defined as usual by Z

(3) The algebraic sum of the volume currents at any junction

point Ay Cy Ey etc., is zero.

(4) The excess pressure at each junction point is the same for

both main line and branch (i.e., continuity is assumed).

(5) The direction of positive current is from left to right.

Let us fix our attention on the section from C to E. The volume

current into C from the left is Xn-\* That out of C to the right is

Xn . Consequently by the continuity assumption (3) above, the

current out of C to D is Xn-i Xn . And hence the excess pressure
at C in terms of Z2 is Zz(Xn~i Xn). Similarly that at E is

Zz(Xn Xn+i). But the difference between the excess pressures
at C and E expressed in terms of Zi is ZiXn . We therefore have the

equation

whence there follows

fn + A'n-i = O. (7-2)
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We now assume for convenience that the filter is an infinite one and
denote the impedance of the infinite network to the right of any
section by Z>. This implies that all Z*, are identical. We then

have in terms of the main line impedance for the excess pressures
at C and E

pc = Xn (Zi + Z^),

PE - X+i(Z, + Zoo).

It should be recalled that we are assuming that the excess pressure is

zero at the termini 5, D, Fy etc. It now follows from (7-3) that

(7
.

4)

Now if we substitute into the above

pc = Z2(AV_i Xn)

and

we

PE = >2(A n A n+ i;,

have at once the simple but important relation

Xn Xn l

(7-5)

This constant complex ratio will be called eY
,
where Y is complex.

Substitution into the eq. (7-2) then yields

or

cosh Y = i + JZ,/Z,. (7-6)

Now if Y is a pure imaginary, e
Y

is a pure circular function and
Xn+i and Xnj etc., differ only in phase. That is, there is no pro-

gressive attenuation in this case. But if Y is a complex number of

the form a + /, the volume current as shown by (7-5) will suffer

progressive attenuation as the sound passes through the filter line.

The condition that Y shall be a pure imaginary is that cosh Y
(which is the cosine of /Y) shall lie between + I and I. That

is, we have
i >(i + |Z,/Z,) > - i. (77)

It therefore follows that the region in which we get no attenuation is
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bounded by the limits

and
Z;/Z2

= O

Zj/Z2
=

4.

(7-8)

Outside of this region there will be attenuation. This then opens up
the possibility of constructing an acoustic filter to specification.

The question that arises is,

what should be used in prac-
tice for Z t and Z2 ? We shall

discuss first some ideal cases.

Let us find the resultant

impedance of an inertance and
a capacitance placed in paral-
lel. Consider two idealized

diaphragms a and ^, of which

the first has a mass ma and

negligible stiffness, while the

second has stiffness /& and

negligible mass. In both

cases the damping is ne-

glected. Let the effective

cross sectional areas be Sa and &. The two diaphragms are ar-

ranged in parallel, so that they are operated by the same excess

pressure, viz., Pe'wt . The equations of motion of the diaphragms
are then respectively

> O T) ~it.*t "}

(7-9)

Using

7 5.

?
i<at

1

*
IO

"J

where the displacements have been denoted by and &.

volume currents Xn = ^fci, etc., instead, we have

c 9
06

(7-10)

The volume current in the branch containing the inelastic dia-

phragm is then obtained by simple integration (making the integra-
tion constant zero) and is given by

(yi i)
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Similarly the volume current Xi> is given by

-^Ai-
/W><?". (7-12)

Now at the junction of the two branches we have continuity and

hence

Xa + Xb
~ A' = O, (7T3)

where X is the current in the line (with the positive direction

measured away from the junction). On substitution we have

wherein we have set M ma/Sa
2 and i/C=fb/Sb

2
. M is the

inertance of the inelastic system and C is the capacitance of the

elastic system, as we recall from the definitions of Section 2-3. For

the impedance of the two in parallel we have

Let us now suppose that the impedances Z\ and Z2 of the filter line

are each composed of such a parallel arrangement of inertance and

capacitance. Then of the conditions (7-8) the first can be satisfied

only by Z2
=

(if we disregard very high frequencies and do not

allow M to become negligible). This leads (by (7-15)) to a fre-

quency _
(7" 6)

as one limiting frequency of the non-attenuation region. M2 and

C2 are the inertance and capacitance, respectively, making up the

impedance Z2 . The second condition (Zi/Z2
=

4) leads to a

frequency

fC2)'
v/x/ '

where Mj and Ci belong to Z\. Thus between v\ and v^ there lies a

non-attenuation region which may by appropriate choice of Z\ and

Z2 be made of observable magnitude and hence of utility.

We next consider the placing of inertance and capacitance in

series. In every part of the line the volume current is the same,
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i.e., Xa
= Xb, if we continue to use the analogy introduced above.

Denoting the excess pressure over the inertance by Pa and that over

the capacitance by A, we have (recalling (7-11) and (7-12))

,17*13 i

which becomes on substitution ofM and C

iwCA = X

p
or

(7-19)

5c

whence the impedance of the two in series will be

(7
'

20)

Suppose that Z\ and Z2 are both made in this way, i.e.,

The frequency limits given by (7-8) are then easily calculated to be

I / I /" = ^:\/Tr7r (7-20

and

4MS)

The Helmholtz resonator provides a good example of inertance and

capacitance in series (provided dissipation be neglected or radiation

not allowed to take place). From our previous work (Sec. 2-3)

we recall that the inertance of the resonator (which is due to the

mass of vibrating air in the opening) is

M po/^o,

while the capacitance, which arises from the stiffness of the air

chamber, is

c =
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where V is the volume of the chamber and CQ is the conductivity of

the opening. These values when substituted into (7-2 1) and (7*22)

give the limits of the non-attenuation region, when both Zi and Z2

consist of Helmholtz resonators (an impractical arrangement, of

course, since a Helmholtz resonator is a closed vessel and cannot be

put in series with anything).
Since it is essential to have the transmission occur through Z], it

is evident that the simplest construction for Zi would be a tube.

Now what are the incrtance and capacitance of a tube ? The former

seems simple enough, being equal to the mass of the air in the tube

(or section thereof) divided by the square of the cross-sectional area

(Sec. 2-3). In Section 2-6 we saw that a tube has capacitance which,

indeed, is of magnitude SJPQC* per unit length, where S is the area of

cross section. But this capacitance is not localized but distributed.

Hence there arises the difficulty that we are not able to separate the

impedance elements for a tube.

It is not necessary here to go in detail into the reasoning for

and the experimental verification of the final selection of the

approximate values for Z\. It will be sufficient to remark that if

the length of the tube comprising Zi is short compared with the

wave length, the fluid in the tube may be said to move as a

whole without phase difference, whence the inertance will be clearly

po/fS
2
y where / is the length of a section. The actual construction

of filters based on this theory will be discussed in the following
three sections. 1

It should again be emphasized that the foregoing theory is

strictly limited by the restrictions imposed, namely, that the air in

each section moves as a whole, since the length of each one is short

compared with the wave length. It is obvious that independently
of the choice of Z] and Z2) we can not expect the theory to work for

high frequencies. And of course we have neglected viscosity

dissipation.

A more accurate theory of filtration would not lump the im-

pedances as is done in the foregoing, but would consider the wave
transmission through the main line as affected by the presence of the

branches, in the way in which the problems of Chapter V have been

solved. This procedure has actually been carried through by
Mason (loc. cit., above). A detailed analysis of this kind will be

1 For further details see G. W. Stewart, Phys. Rev., 20, 528, 1922.
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found in Appendix IV. The principal results only will be stated

here.

If we denote the volume current at the beginning of the mth

section of an infinite filter by Xm,
the attenuation relation on this

theory takes the form

Xm+1/Xm = *-*w, (7-22*)
where

cos W = cos k/i + ^ sin k/i. (7-22^)
2^2

In the formula (7-22^) 7j
=

length of one section, while Z2 is the

branch impedance at the junction, as before. Z is not the same as

Zi. Rather we have here Z =
paC/S, the acoustic resistance of the

plane wave in the conduit. The transmission region is then that

for which W is real, i.e., that for which we have

i < cos k/i + -~-sin k/i < + i. (7-22^)
2^2

If the excess pressure at the beginning of the mth section is/>w ,
we

have

pm-l/Xm-i
= pm/Xm = COttSt. = Z

,

where Z may be defined as the characteristic impedance of the

filter. Analysis shows that

/i + iZ/2Z,-tan(*/i/2) (Zo - ZV i-/Z/2Za .cot(*A/2)
*

(

Comparison between the two filter theories will be made in con-

nection with the discussion of the construction of definite types of

filters. It will be found that in general the more exact theory is of

no greater advantage in practice than the lumped impedance

theory. In fact the application to the actual construction of filters

is more easily made on the basis of the latter. For this reason and

also because of its greater physical suggest!veness and mathematical

simplicity the main emphasis in this chapter has been placed on the

lumped impedance point of view.

7-3. The Construction of Acoustic Filters. I. Low Frequency
Pass. The design of a possible low frequency pass filter is shown

in the following schematic diagram (Fig. 7-6). The main line or Zi

sections are formed by the tube through which the transmission
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takes place. The branch or Z2 sections are Helmholtz resonators,

so that Z2 is formed of an inertance and capacitance in series. In

FIG. 7-6.

this case Zi will be assumed to be made up of inertance only, i.e.,

C] = o. Thus (referring to (7-15) and (7-20)) we have

Z' = !-LM. --L-1 1

whence

Z,/Z2
=

-.J'J

co
2M,C2

(7-4)

Since M2 can not be infinite nor Mi zero, the condition Zi/Z2
= o

can be satisfied only by o> = o; hence, one of the limiting frequencies

of the non-attenuation region is vi = o. The other one conies out to

be

The inertance of each line section is given by

, _ mass of air in tube per section
Mi - ^

_ Po/i

Si
' (7-25)

where A is the length of one section. The inertance of the branch is

A/2
=

po/^o, (7-26)

where for cQy the conductivity of the orifice, we write (see Sec. 2-4,

eq. (2-33))

ira

2

a being the radius of the orifice and L the channel length. Finally

C2
= JVpor

2
, (7-28)
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in which F2 is the volume of the resonator chamber. Making the

substitution, we have for the range of no attenuation

= O to (7-29)

wherein Si = area of cross section of the main line.

An illustration of this type of filter is presented in Fig. 7-7.

This particular filter has the following constants: A =
1.67 cm,

r\ radius of the main line = 0.75 cm, r2 = radius of surrounding
chamber = 1.30 cm, a = 0.126 cm, V% = 4.36 cm 3

. The con-

Frequency

FIG. 77.

ductivity <r computed by eq. (7-27) turns out to be .141 for each

aperture and, since there are 16 apertures in this particular model,

the total Co to be substituted into eq. (7-29) is (.141)16
= 2.26. We

note in passing that conductivities in parallel are additive, as in the

analogous electric case. The cut-off frequency calculated from eq.

(7-29) is found to be v%
~

3175 cycles. Examination of the experi-

mental curve shows good agreement between the theory and the

actual cut-off. After the cut-off there is no audible frequency until

5200 cycles is reached, and even here the transmission is negligible.

The whole range of inaudibility is found to be 66% of the cut-off

frequency, and the average percentage transmission in the non-

attenuation region is 65%. This transmission seems to depend for a
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given number of sections on the ratio between the outside chamber

radius and the main line radius (both measured from the axis of the

line). Observations on a large number of filters 1 show that the

transmission varies inversely as this ratio. On the other hand, the

range of inaudibility above the cut-off increases with this ratio. It

must be pointed out, however, that the observations referred to

concern the transmission when the conduits leading to and from

the filter have the same diameter as the conduit of the filters. As
will be shown in Section 7*8, this is not the optimum condition for

transmission at a given frequency. Other things being equal,

increasing the number of apertures into the side chamber increases

the range of inaudibility. As one would expect, it also increases the

cut-off frequency. Although there are a number of factors involved,
it is possible to make a successful design for a low frequency pass
filter.

The following figure (Fig. 7-8) shows in greater detail than the

previous one the construction of a low frequency pass filter of

different size and characteristics, and may prove of help in inter-

preting the dimensions given for the model just discussed.

According to the theory of Mason (Appendix IV) the transmis-

sion region is given by the condition (see eq. (7-22^))

ry

i < cos kli H 7/-sin kl\ < + i. (7*290)

The frequency limits are then given by the transcendental equations

^-
= - cot (M/2),

~ = tan (*/i/2), (7-29/5)

analogous to eqs. (7-8) on the lumped impedance theory. If k/i

is so small that we can neglect higher powers than the first (i.e.,

short sections and low frequencies), the eqs. (7-29^) become

identical with (7-8), provided we set Zi = iklipvc/S
=

/coA/i, where

Mi is as above. But this is just what we chose for Zi in this

section. Hence we see that for the low frequency pass type of filter

the two points of view give to a close approximation the same

result.

7-4. The Construction of Acoustic Filters. II. High Frequency
Pass. The accompanying schematic diagram (Fig. 7-9) indicates

1 See G. W. Stewart, Phys. Rev., 20, 546, 1922, for details on filter construction.
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the design of a high frequency pass filter. The branches are here

simple orifices, possessing inertance only. That is, Z2
= /coM2 .

The question arises, what shall one take for Zi? The previous
section assumed that Z\ was a simple inertance. But this as-

sumption here will lead to nothing. It seems necessary to introduce

capacitance in the main conduit. There is indeed some justification

FIG. 7-9.

for this step. The orifices which compose the branch lines are very
short and consequently the pressure gradient in them is much

greater than that in the line. Hence we may take it that the

particle velocity in M2 is much greater than that in the line. Effec-

tively, it is much as if the particles in the line were at rest relative to

those in the orifices. But then the line would constitute a capaci-
tance for the orifices. The question is, how to introduce it? If we
consider the line to be made up of inertance and capacitance in

parallel, we then have

7 - ; / My> \
Zl ~

*\i -MiCW/'
and consequently

Zj/Z2
=

A/j/Af,(i
- A/iCW). (7-30)

Introducing Mi = po/i/, M2
= p /r , and Ci = V\/poC

z
y

where

V\ = volume of one section of the line, eq. (7*30) becomes

This will be zero only for k (i.e., *>) equal to oo . The other frequency
limit will be given by

CQ/2kS= -2(1 -W)/*/!. (7-30

But from (7-29^) we see that the more accurate theory gives for this

same limit
= tan

and hence the present theory will give correct results only if

tan (A/2) = -
2(1

-
**/,)/*/ (7-33)
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which is not an identity but approximately satisfied if &/j/2 is in the

immediate neighborhood of Vj. It is evident l that the assumption
of (7-30) will not do in general. However, let us suppose that

capacitance only is attributed to the conduit, a not improbable

assumption. This would lead to Zi = //Cico. But following the

suggestion of the more accurate theory, we let Z\ = 4//Cico, i.e.,

assign only one quarter the total capacitance per section as given

above. The upper frequency limit is then still v = <x>
y
while the

lower limit is given by the relation

colikS = Mi/*, (7-34)

which agrees to within 10% with (7-32) if k!\fi < 0.50. The

percentage error in the frequency obtained by using (7*34) will be

about half this. The lower limit is then

The frequencies on the lumped impedance theory are then ^=00
and *>2 as in eq. (7*35). The latter can be used with reasonable

success even if still semi-empirical and suggested by the more

accurate theory.

It may be well to note here that, while we have assumed con-

sistently that #2 is a pure reactance, there may arise cases in which

this is not true. For example, if the branch, instead of being a

simple orifice, were a long cylindrical tube, Z2 would have both real

and imaginary components. (Recall eq. (5-30), Sec. 5*4.) Such

cases are easily treated on the more general theory (Mason, loc. cit.,

p. 264).

An illustration of the high frequency pass type of filter is pre-
sented in the following figure, together with the transmission curve.

This particular filter is composed of six sections. The other con-

stants are /i
= 10.0 cm, r\ = 0.485 cm, a =

.139 cm, L length of

orifice channel =
0.5 cm. The conductivity is computed from

(7-27) to be CQ = 0.0845. Substitution into (7-31) yields for the cut-

off frequency i>2
= 620 cycles, in good agreement with the observed

results. This filter and others of like construction with different

1 The success with which G. W. Stewart (loc. cit., p. 547) used (7-30) in treating

high pass filters is due just to the fact that, in the examples he gives, kti/2 approximates
the above value. See R. B. Lindsay, Phys. Rev., 34, 652, 1929.
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dimensions give good transmission for all frequencies (so far tested)

above the cut-off. In the case here cited the average transmission

from the cut-off to 7000 cycles is about 80%. The results for a

great number of high frequency pass filters studied by one of the

Frequency

FIG. 7-10.

authors l indicate that the actual number of sections is not vital.

It should be noted, however, that decreasing the radius of the

orifices or increasing their channel length reduces the transmission

in the non-attenuation region. This is due to viscosity.

7-5. The Construction of Acoustic Filters. III. The Single Band

Type. By combining the two types mentioned in the preceding

sections, it is possible to

construct filters which al- , \'<z . . fr \*t

low (to a first approxima- M M M M M LJ
tion) the transmission of | | | | | j

S \NOLC

FIG. 7-11.

but a definite band of fre-

quencies. A schematic dia-

gram of such a filter is pre-

sented in the following figure (Fig. 7-11). Theoretically Zi is an in-

ertance only, while Z2 is made up of C2 and M2 in parallel. But in

the practical construction it is necessary to have an orifice leading
into the branch. This will then have an inertance which we denote by

1 G. W. Stewart, loc. cit.
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M2'. This will be in series with C2, with a resultant which from

eq. (7-23) we can write as

This must be combined in parallel with

Now if the resultant impedance of the side branch is to be denoted as

usual by Z2 ,
we have

-= +
Z2 Z2'^Z2

"'

whence

while
Z x

= iwA/i. (7-39)

In the usual way we arrive at the following frequency limits for the

non-attenuation region

A/i +
\Ct(MiMt + MiMj + 4A/2M2')

In the evaluation of these expressions we use

Mi =
M2

=
M* =

(7'4)

wherein S\ and A are the cross-sectional area and section length of

the main line respectively. ^2 and 72 are the corresponding quanti-
ties for the side tube, while the volume V^ is the volume of the side

chamber and CQ is the conductivity of the orifice into this chamber.

On substitution we have
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= I foA'a

~2TW,(Afo + ft)'

(7-42)

As an illustration of this type consider the filter indicated in the

diagram. This consists of three sections with l\ 2.66 cm and

Frequency

FIG. 7-12.

r\ = 0.243 cm; /2
= 2.40 cm and V^ = 22.7 cm

s
. The conductivity

Co = 0.455. The computed values of v\ and v^ from (7*42) are

v\ = 295, vz = 506, in good agreement with the measured trans-

mission. The region of inaudibility extends to 1300 cycles, where

another (transmission) band begins, the transmission attaining
considerable value about 5000 cycles. This additional band, the

presence of which is not contemplated in the simple theory above

given, will be discussed in a later section. We may note that the

inaudibility region is about 3! times as great as the transmission

region. The average transmission is in this case rather small,

being only 37%. In all the experiments with single band filters the
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average transmission in the first transmission band was found to be

comparatively small.

Concerning the bearing of the theory of Mason, already previ-

ously discussed (see also Appendix IV), on the single band type filter,

it is sufficient to remark that if kl\ is small the comments at the end

of Section 7-3 apply here also and there is little to choose between

the two points of view.

7-6. Change of Phase in Filtration. In the filter theory of

Section 7-2 there were developed the expressions (eqs. (7-5) and

We may now write eY in the general form

e
y = e

-
e-.+

9 (7
.

43 )

where a and $ are both real; a is the attenuation constant and ^ the

change in phase from section to section. Now reference to the

previous sections will indicate that in all cases there discussed the

impedances have been pure imaginaries. Hence Zi/Z2 has always
been real and therefore cosh Y has also been real. Since cosh Y
= cosh a cos

\l/ + / sinh a sin
\fs,

it follows that we must always have

in the cases discussed

sinh a sin
\[/
= o (7'44)

and

cosh Y cosh a cos
\l/

I + - ~
(?'45)2 /^2

Now in the region of no attenuation we have a = o, whence

cosh a = i and therefore

cos f =I+ i|l. (7
.46)

2, Z>2

Substitution of the values of the ratio Zi/Z2 for the limits of the non-

attenuation region yields for the first limit cos ^ = + I and for the

second limit cos
\f/
= i. Hence at one limit of the non-attenu-

ation region the change of phase from one section to the next is

zero, while at the other limit it is IT* Within these limits \l/ must

vary continuously from the one value to the other, for the functions

employed are all continuous. Now in the attenuated region we have

a. 5* o. Hence from (7-44) it follows that sin \l/
= o. Thus \l/



THE FILTRATION OF SOUND 179

remains constant throughout a region of attenuation and equal to

either o or TT. Moreover from (7-45) it follows that for the region of

attenuation

cosh a = - ( i + i ~
j

, (7-47)

where the sign must be chosen to make cosh a positive. The

eq. (7*47) can be used to compute a and hence the transmission

in the attenuated region, assuming that the transmission is pro-

portional to e~2Hot
y
where ;/ is the number of sections. Comparison

of theoretical and experimental transmission curves for filters of the

kind mentioned in the previous three sections has been carried out by
Peacock. 1 The agreement is as good as might be expected, con-

sidering the limitations of the theory.

So far as the phase ^ is concerned, we may note that for a low

frequency pass filter ^ goes continuously from o to TT with increasing

frequency through the region of no attenuation, while for a high

pass filter the variation is from TT to o. Now reference to the

values of Zi/Z2 for specific filters in the three previous sections

indicates that ZifZ% and hence i + %Z}/Zz will pass through

infinity with a change in sign somewhere in the attenuation region.

This will make a = oo for this particular frequency and, since

cosh a has to remain positive, the theory indicates at this place a

discontinuous change in ^ (eq. (7-45)). For the low-frequency pass

type for which (see eq. (7-24))

2,

the discontinuity will occur for

i

and at this point \f/ will change discontinuously from TT to o, as is

evident from eq. (7*45).

Measurements of
\f/
have been carried out by one of the authors 2

for the region of no attenuation. A sample curve for a low fre-

quency pass filter is shown in the accompanying figure (Fig. 7- 13).

The upper full line represents the computed variation in ^ from

1 See H. B. Peacock, Phys. Rev., 23, 525, 1924.
2 G. W. Stewart, Phys. Rev., 23, 520, 1924.
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(7-46) and it is seen that the agreement with the measured values is

reasonably satisfactory.

It is of interest to note that ^/co denotes the time lag in going
from one section to the next. Now since in the non-attenuated

i +region cos i

it follows that if arc cos

(i + |Z]/Z2) is approxim-

ately a linear function of o;

over a certain frequency

range, we shall have a fil-

ter in which the retarda-

tion time is approximately
constant over this fre-

quency range. The anal-

ogy with electrical retarda-

tion lines is obvious.

Essentially the same

results as the above are

obtained from Mason's

theory. Thus recalling

(7-220) and (7-22^) (see

also Appendix IV) and

placing W = a ib^ where

a is the phase factor and b

the attenuation coefficient,

we have

rTf

cos a cosh b + / sin a sinh b = cos kl\ -\ -=- sin kl\.2Z2

Since we have consistently assumed Z2 to be a pure reactance, cos W
is always real. Therefore sin a- sinh b o and cosW = cos a cosh b.

In the transmission region there results, since b = o, or cosh b = i,

L7 ,

& L7cos a = cos kli -\ ^-sm kli.

000 800

Frequency

1000 1200

FIG. 7-13.

In the attenuation region b j o and sin a = o, so that a = o or

and
n

cosh b = cos k/i + ^-sin kli.2Z2
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We still get the discontinuity in the phase a when cosh b becomes
infinite.

7-7. Additional Bands in Acoustic Filters. It has already been

noted that the attenuation in low frequency pass filters does not

extend to indefinitely high frequencies, but that additional non-

attenuated bands appear beyond the theoretical cut-ofF. The

theory of these additional bands will not be presented here,
1 but it is

of interest to note that their existence can be established and their

upper frequency limit fixed in each case by the method outlined in

the previous section. For the particular frequency for which the

length of one section of a filter of the low frequency pass type is

equal to X/2, we shall have resonance in the line and hence Z\ = o.

But this means that there will be a region where Z\ and Z2 are

opposite in sign and \Z\\ < 4|Z2
| again, and so we shall have

transmission. This is clearly shown in the following figure (Fig.

7*14). The ability of the theory cited to predict the actual ad-

, in,** z, i(Mt <* -sfi

FIG. 7-14.

ditional bands is illustrated in an article 2
by one of the authors.

The general theory of Mason also handles the existence of

1 See G. W. Stewart, Phys. Rev., 25, 90, 1925.
2 G. W. Stewart, Phys. Rev., 25, 90, 1925.
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additional bands very simply. It is only necessary to plot the

function

cos W = cos kl\-\ rr sin kl\,
2Z2

and pick out the regions in which i < cos W < + I, which will

represent transmission bands. For an example, see Mason, loc. cit.,

Fig- 3> P- 268 -

7-8. Finite Filters. The theory of Section 7*2 applies to infinite

filters, whereas all the filters constructed are, of course, finite.

However, all that is necessary in applying the theory to a finite

filter is to have the impedance of the conduit at the two ends of a

finite number of sections what it would be for an infinite filter. As

will later be appreciated, this matching of impedance is always

possible only for a selected frequency, and consequently the charac-

teristic action of the infinite filter will not be obtained for all

frequencies. Let us now compute this impedance. Consider the

single section depicted graphic-
Z

t
I j

ally in the figure. The end im-

pedances are denoted by Z^.

The idea is this: we want the re-

sult of combining the single sec-

pIG - tion with the impedance Zoo on

the right to give again Zoo on the

left. Then the result of combining that with the next section will be

again Z^, etc., so that our procedure in Section 7-2 will then be justi-

fied. In order to have this it clearly suffices that

Z r7
oo ^1

on solving which we arrive at

As a matter of fact it is somewhat more satisfactory to arrange
either the line (i.e., series) impedance or the branch impedance
symmetrically. In this way we get the two following diagrams

(Fig. 7-16, I and II), in the first of which the line impedance Zi is

divided into two equal parts in series and in the second of which the

branch impedance Zi is divided into two equal parts in parallel.

In each case the resulting filter network is exactly equivalent to the
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previous one presented in Fig. 7-4 of Section 7-2 but has the ad-

vantage ofgreater symmetry. In Fig. 7-16, 1, the points A'B' y C'D' y

C
f

FIG. 7-16 II.

E'F'
y etc., are termed mid-series points, while the points AE^ CD,

EF, etc., in Fig. 7-16, II, are called mid-branchpoints. We are now
in a position to give a more accurate definition of the term section.

By a mid-series section of a filter we shall mean the portion between

any two successive mid-series points, i.e., from A'E' to C'D', etc.

By a mid-branch section of a filter we shall mean the portion between

any two successive mid-branch points, i.e., from AE to CD, etc.

The impedance for an infinite filter with all sections alike is now the

same in either direction

from a section, though its

value will naturally depend
on whether the sections are

mid-series or mid-branch.

We can compute these val-

ues readily. For the mid-

series case, consider the sec-

tion in the following Fig. B' j)'

7-17. We desire the total FIG. 7-17.

impedance to the right of

A'E' to be the same as that to the right of C'D'
y i.e., Z (

S. By the

usual scheme of combining impedances we have
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Z<? = Z;/2 + ^-j (7-48)

Z~2
+

Z,/2 + Z>

Solving for ZJ?, we arrive at

N M

zs>=VZiZ, + jz,. (7.49)

This will be called the mid-series impedance. The calculation of

the mid-branch impedance Z2} follows at once from the following

Fig. 7* 1 8, in which one mid-branch section is depicted. The usual

computation yields here
A r^"""1 ^ zz

Zw= ^^==.(7.50)
Vzxz2 + iz x

2
w 3 '

(bj
As a matter of fact the

'

termination of an acoustic

filter at a mid-branch point
is practically impossible.

D Hence here eq. (7-50) is of

FIG. 7-18. theoretical interest only.
We shall concentrate on

the mid-series case. It is clear that we have the possibility of con-

structing a finite filter if the input and output impedances are prop-

erly chosen, that is, if the impedance of the acoustic line in which

the filter is inserted is properly matched with either the mid-series

or mid-branch impedance of the filter, depending on how the inser-

tion is made (i.e., how the filter terminates).

In the theory of Section 7-2 the transmission in the non-attenu-

ation region of the filter was 100%. But the actual experimental
tests always show a smaller transmission. It is probable that the

reason for most of the difference between the theoretical and actual

values is to be found in the improper matching of the impedances of

the line and the filter. All we need note here is that the trans-

mission should be materially increased with proper impedance

matching. This expectation has been confirmed by experiments in

which the filters used terminated at mid-series points. If the

acoustic line in which the filter is inserted is a cylindrical tube, we
should expect increased transmission for a tube of cross section S

y

where

Pof^
/ 7 i /

7 . ci)
j 1JZ 1Z2 +--Z 1

2
, V75U
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since poC/S is the point-impedance of an infinite tube of this cross

section. Of course, since Z\ and Z2 are functions of the frequency,
the above relation can hold exactly for but one frequency. Never-

theless, for low-frequency pass filters it can be shown that the radical

remains fairly constant over a range of frequencies from zero up to

half the cut-off frequency.
The results of an actual test are indicated in the diagram (Fig,

7-19). The "old curve" shows the transmission obtained when the

Frequency

FTC. 7-19.

low-frequency pass filter under consideration was put in a conduit of

the same cross-sectional area as the filter line itself. The two other

curves indicate the result of inserting the filter into conduits with

cross-sectional areas calculated from the above eq. (7-51) for the two

frequencies 1150 cycles and 100 cycles. The effect on the trans-

mission is very marked and the increase, particularly in the case

where the matching was at TOO cycles, rather surprising. It

becomes all the more so when it is recalled that in the latter case

we have sound traveling from a tube of cross-sectional area 2.43 cm2

to one of cross-sectional area 0.718 cm2 with actually relatively

increased transmission over a wide range of frequencies. It might
be thought that this is inconsistent with the discussion in Section

3-6 of Chapter III on the effect of a constriction on transmission.

But it must be remembered that the constriction in the present case

is the wave filter, the action of which is quite different from that of a

simple tube.
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It is necessary to emphasize again that no impedance matching
will hold for all frequencies. The best results are to be had for low-

pass filters for the reason mentioned above, i.e., the behavior of the

radical VZiZ2 + iZi
2 in this case.

In connection with the branch transmission theory it has

already been noted (Sec. 7-2, eq. (7.22^)) that the so-called charac-

teristic impedance has the value

= 7, V + *^/2^2-t

\1 - /Z/2Z2 -C
Z =

/Z/2Z2 -COt Ofc/,/2)

Now if k/i is small, this may be written

2 (l

= ik/iZj % + Ztfik

But from the above the mid-series impedance is

Z<$ = ZiV J + ZifZl9

and we have already noted in Section 7-3 that for the low-frequency

pass and single-band cases to which the above applies Zi = ik/iZ

=
ik/ipoc/S. Hence to the approximation noted the mid-series

impedance of the lumped impedance theory is identical with the

characteristic impedance of the transmission theory. Naturally the

characteristic impedance is of greater generality. Nevertheless the

simpler form of Zoo makes it preferable where it is possible to use

it. Experimental comparison of Z and Z } with the actually

measured impedances will be found in an article by G. W. Stewart

and C. W. Sharp.
1 As might have been expected from the above

theoretical considerations, the experimental values agree equally
well with Z and Z$ for small k/i, while they agree much Letter

with Z for large kl\ (high frequency pass case).

7-9. Acoustic Wave Filters in Liquids and Solids. It is to be

observed that there is nothing in the preceding theory which would

prevent its application to the construction of filters employing liquid

media instead of air or other gases. It is conceivable that such

liquid filters might be of ultimate advantage in submarine signalling.

The possibility of constructing filters using solid media was

early envisaged by one of the authors 2 on the general theory of

1
Jour. Opt. Soc. of Amer., 19, 17, 1929.

2 G. W. Stewart, unpublished.
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acoustic wave filters. That is, there is reason to expect that if a

metal rod, along which longitudinal waves may be transmitted, is

loaded with masses attached :it regular intervals, it may show

filtering properties. The rod itself thus serves as the acoustic line

and the attached masses as the branches. The design is shown in

the following schematic diagram (Fig. 7-20). Such arrangements

FIG. 7-20.

have been built and their transmission characteristics studied. 1

The results will not be discussed in detail. Nevertheless we should

note that the constructions showed reasonably constant transmission

over a range of frequencies, followed by a sudden change to high

attenuation, quite characteristic of the action of the wave filters

previously discussed. The influence of the dimensions of line and

branches has been investigated with the following general results:

1. Increase in the volume of the branch decreases the cut-off

frequency.
2. Increase in the length of the neck (i.e., the part of the branch

where contact is made with the line) decreases the cut-off

frequency.

3. Increase in the distance between adjacent branches decreases the

cut-off frequency.

4. Additional bands appear at the resonance frequency of the rod

between branches.

5. When only one branch is used (i.e., a one-section filter), resonance

of the branch takes place with very high attenuation at the

corresponding resonance frequency. This reminds one of

1 See V. C. Hall, Phys. Rev., 23, Ji6A, 1924; W. D. Crozicr, Methods of Testing
Acoustic Wave Filters in Solid Media, Master's Thesis, Univ. of Iowa, 1924; H. F.

Olson, Action of Acoustic Wave Filters in Solids as Dependent on Dimensions, Masters

Thesis, Univ. of Iowa, 1925.
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the behavior of the Helmholtz resonator used as a branch in

an acoustic conduit, and shows the existence of inertance and

capacitance in the branch.

Any reasonably exact theory of this filter would probably be

hopelessly complicated. But in a general way the action can be

understood by employing the earlier theory as an approximation.
Thus if longitudinal waves travel down the rod, there will be

impressed on it corresponding radial waves. The displacement of

the rod will tend to bring about displacement of the mass in the

branch. On account of the large mass of the latter this will cause

considerable stress in the portion of the branch where connection is

made with the rod. In other words, the connection will display
elastic effects and will give rise to capacitance. In addition the

mass of the branch will also move as a whole, i.e., it will possess

inertance, as will also portions of the rod where the motion takes

place as a whole. We may therefore reasonably expect the combi-

nation to act as a filter with inertance in the line and inertance and

capacitance in series in the branch. Such a filter is a low-frequency

pass type, and indeed the results of experiments show that all solid

filters constructed on the above design are just of this type. More-

over, it has proved possible to apply the theoretical equations of

Section 7*3 to the solid filters studied by getting empirical formulae

for the inertance and capacitance, yielding a semi-quantitative

understanding of the action of these interesting instruments.

In addition to the filtration of longitudinal waves in solids, it

should also be mentioned that the filtration of torsional waves is

theoretically just as possible. For this purpose the branch masses

may be replaced by sets of vanes with the planes of the vanes

containing the axis of the rod along which the torsional waves are

transmitted. Experiments by one of the authors l show that an

arrangement of this kind acts as an efficient filter.

As a matter of fact it should be mentioned here that illustrations

of the filtration of sound in solids are to be met with in several

connections in applied acoustics. For example, the mechanical

lever used in loud speakers performs a filtering action, as does the

phonographic needle lever with its diaphragm. Possibilities of

mechanical filtering may arise in unexpected quarters. For

example, a mechanical filter 2
is at present used for a turntable drive

in a disc-recording installation for sound pictures.

1 G. W. Stewart, unpublished.
2
Elmer, Bell Laboratories Record, 7, p. 446, 192.9.
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7-10. Design of Acoustic Wave Filters. Reference will be made
in this section to the design of filters of the types described in

Sections 7-3, 7-4 and 7-5 of this chapter. The design of a filter will

depend upon the diameter of conduit to be used, the frequency of

optimum transmission, the cut-offs, and the ranges of transmission

desired. Although the most successful filter will be a matter of

trial, since viscosity has been neglected, yet satisfactory filters can

readily be constructed by adopting first the conduit, second the

separation of orifices, and finally the other specifications determined

by computation. The separation of the orifices will determine the

position of the additional bands. If an additional band occurs in a

region where it is objectionable, it can be removed by an additional

filter designed to attenuate in that region. Illustrations of the

success of filters in series have been given by one of the authors. 1 It

is also possible to make the cut-offs less sharp by the introduction of

additional viscosity by means of small orifices. Computations are

probably most easily made using the lumped impedance theory as a

first approximation (see eqs. (7-8), (7-29), (7-35), and (7-4))-

QUESTIONS AND PROBLEMS

1. A weightless string contains six equally spaced, equally heavy
beads. Using the method of Lagrange (see Rayleigh, 2d edition,

1926, Vol. I, p. 172; also Crandall, p. 64), find the natural frequencies
of vibration and show that the string acts as a low pass filter.

2. Make a careful comparison of the lumped impedance theory
and the transmission theory in so far as the additional bands are

concerned.

3. Design a high-pass filter having a cut-off at about 1200 cycles

and a conduit one-fourth inch inside diameter.

4. If instead of a sharp cut-off high-pass filter you desire a

gradual one extending from say too to 1200 cycles, what would be

your method of procedure to secure such an approximate filter?

5. Design a low-frequency pass filter having a conduit one-

fourth inch in inside diameter and a cut-off at about 500 cycles.

To what size conduit must this be attached if there is to be no

reflection at the junction, assuming, of course, an infinite number of

sections?

6. Show graphically where the return bands in a low-pass filter

may be expected.

1
Stewart, Jl. Opt. Soc., 9, 583, 1924.



CHAPTER VIII

ACOUSTIC INSTRUMENTS AND MEASUREMENTS

8' i. Measurement of Acoustic Impedance. Electrical Method.

The first quantitative measurements of acoustic impedance were

made by Kennelly and Kurokawa 1 in connection with their study
of the acoustic load of an air column on a vibrating diaphragm. As
noted in Section 2-5 the definition of acoustic impedance which they
use is the ratio of the force to the particle velocity, differing from
the one in use throughout the present text. Their method may be

summarized as follows: They use a telephone receiver as a generator
of sound. The total mechanical impedance of the diaphragm is

composed of (i) the actual mechanical impedance, (2) the virtual

mechanical impedance due to its motion in the permanent magnetic

field, (3) the acoustic impedance of the air behind the diaphragm,
(4) the acoustic impedance of the air in front of the diaphragm. It

is the last of these which is measured. Thus if the frequency of

vibration is maintained constant, while the acoustic load in front is

altered (by changing the length of the air column, for example, or

substituting a new attachment altogether), the three first imped-
ances will not be altered, while the acoustic impedance in front will

change with the load. This in turn will cause a change in the

electrical, so-called motional impedance of the diaphragm. The
latter change can be measured electrically and from it the acoustic

impedance. It must be mentioned that it is only in the neighbor-
hood of the resonance frequency of the diaphragm that the acoustic

load affects the total mechanical impedance materially, and hence

this restricts the application of the method considerably. Any
method involving mechanical impedance will obviously suffer from

the same handicap. It is therefore hardly suitable to use such a

method in the measurement of acoustic impedance over a wide

range of frequencies.
8*2. Measurement of Acoustic Impedance. Acoustical Method.

Another method for the measurement of acoustic impedance has

1 A. E. Kennelly and K. Kurokawa, Proc. Am. Ac. Arts and Sci., 56, I, 1921. See

also the extended treatment in Kennelly, Electrical-Vibration Instruments, N. Y.,

1923, p. 167.

190
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been devised by one of the authors. 1 This does not involve the

measurement of any other mechanical impedance and is strictly

acoustical. Moreover the method is absolute in that all measure-

ments can be referred to units of mass, length and time directly, for

only the velocity of sound, the density of the medium and certain

lengths are involved.

In Section 5-1 we discussed the general theory of a branch line.

It was there found that if we denote the excess pressure at the branch

junction by^>* (refer back to Fig. 5-1, Sec. 5-1), and that at the same

point due to the incident wave from the main conduit by p^ and

the volume current into the branch by Xby we can deduce the

relation

pt
=

p*
- pocXb/i$, (8-1)

where S is the cross-sectional area of the conduit. The acoustic

impedance of the branch is, by definition, Z =
ptjXi,. Let us have

pi
=

foe
l<at and p t

=
jp
VM~

e)
,
where e is the phase difference

between pi and />. Substitution into eq. (8*1) above then yields

(8-2)

Now write Z = Z t + *Z2 and put the above equation into the form

PQ f i \ P c Z\ iZ,i fQ ^

*-, (cos e + / sin -
TO

' 72.72 = * (8 '3)
PQ 20 Zi* -j- /j<

Separating the real and imaginary parts and making the substi-

tutions
A =

po/po
f
'CO& I,

B pofpo'-sm e,

we have for the impedance components

2

^
'

4;

whence the determination of7n and Z2 rests on the ability to measure

po/po' and the difference of phase e.

The experimental method is indicated in the following diagram

(Fig. 8-1). The main conduit is the tube AD with a telephone

1 G. W. Stewart, Phys. Rev., 28, 1038, 1926.
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receiver T\ as the source of sound. At C there is a place for the

attachment of the branch whose impedance is to be measured.

The bent tube F slides within the tube AD. There is a side tube B
also connected at the end to a telephone receiver 7*2, and connected

to F via a pair of stethoscope binaurals, the attachments being

made at G and E. A vacuum tube oscillator is used to excite the

source of sound. To secure effective damping of the reflected wave.

FIG. 8-1.

tufts of hair felt are introduced throughout the tube lengths. The

non-inductive resistances RI and jR 3 are high in comparison with the

telephone impedances. R% is fixed at a convenient value. The
observations are taken as follows: with the branch at C removed and

the hole closed the position of the tube F and the value of the

resistance /?5 are adjusted (this adjustment being unique) until no

sound is heard in the stethoscope, indicating that the amplitudes
from E and G are equal and opposite in phase. The branch is then

attached at C and the process repeated. The ratio of the pressure

amplitudes in F under the two different conditions is given by the

ratio of the currents in T^ and hence by the ratio of the two values

of R5 . This will also be the ratio of the two pressure amplitudes

at C, i.e., po/pQ. The phase difference e can be computed from the

difference between the two settings of F. That is, let d be the

distance between the first position and the second, measured

positively towards T\\ then e == 2W/X, where X is the wave length of
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the sound used. This method has proved very satisfactory for the

middle range of frequencies. To get the same order of accuracy for

very high and very low frequencies, a more powerful source of sound

is needed. For further details and a discussion of sources of error,

reference may be made to the article mentioned at the beginning of

the section.

The method has been applied to the measurement of the

impedance of attachments of all kinds, including tubes and horns.

As illustrations we have already considered the cases of the conical,

exponential and hyperbolic horns in Sections 6-3, 6-4, 6-5 (Figs. 6-7,

6-10, and 6-12). We shall note here the results of the measurement

for an orifice and a Helmholtz resonator. These are given in Figs.

8-2 and 8-3. In each case the points represent the experimental

Frequency

FIG. 8-2.

values of Zi and Z2 as computed from eqs. (8-4) above, while the

continuous curves represent the values theoretically computed
from the branch line theory of Chapter V (recall eqs. (5-20), (5-21),

(5-17) and (5-18)). The units, being c.g.s. throughout, may be

defined as "acoustic ohms." The transmission referred to in the

figures is that through the main conduit, while the "power" is the
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value of po'
2

Zil(Zi* + Z^)> It is the relative power output of the

attachment, assuming that the power input in the main conduit is

constant. (See Sec. 6-8 for justification.)

8-3. Measurement of Acoustic Impedance. Other Methods.

From the definition of acoustic impedance, viz., Z = p/X, it is clear

that a direct measurement ofp and X will yield Zy
or at any rate its

absolute value. Such direct measurement has been carried out

by Richardson 2 in work on the amplitude of sound waves in

resonators. Thus the displacement amplitude at the mouth of a

Helmholtz resonator of cylindrical form is measured by the hot wire

microphone (to be discussed in Section 8-4), while the excess pressure

in the resonator chamber is measured by means of a manometric

capsule
3 attached to the back of the resonator. If the radiation

1 This is not shown in Figs. 8-2 and 8-3. But see the corresponding horn diagrams

in Figs. 6-7, 6-10 and 6-12.

2 E. G. Richardson, Proc. Phys. Soc. London, 40, 206, 1928.
3 See E. G. Richardson, Sound, 1927, p. 178.
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impedance of the orifice is neglected compared with the inertance,

we have then simply for the real part

where a is the radius of the orifice, do is the displacement amplitude
and p is the pressure, assumed constant throughout the resonator.

Note that the velocity amplitude is co times the displacement

amplitude. Actual measurements on a resonator orifice gave
Z =

0.31 as compared with the theoretically computed value of

0.25 from pow/Vo, where <r is put equal to la. Further details

concerning the measurement of Z, when viscous resistance is

accounted for, will be found in the paper to which reference has been

made.

A method of measuring the acoustic impedance of porous
materials is developed in an article by Wente and Bedell. 1

Suppose
we have a cylindrical tube with one end terminated by the material

whose acoustic impedance is desired, while the other is attached to a

vibrating diaphragm (see Fig. 8-4). Thus in the figure the dia-

O

phragm is at O and the material to be tested at 0'. The length
of the cylinder is /. We can write the expression for the pressure
at any point distant x from O as follows:

7 7 I Pof '
7 7

7j t cos kl + i sin kl
O

~ cos kl + i%i sin kl

cos kx / sin kx , (8-6)

where XQ = volume current at 0, S = the area of cross section of

the tube, and Zi = impedance at 0', that is, the impedance to be

measured. It is to be noted that the above pressure expression is

easily deducible from eq. (5-30) of Section 5-4, where the impedance

theory of a cylindrical tube is thoroughly developed. It is also to be

noted that viscosity dissipation along the tube is neglected.

1 E. C. Wente and E. H. Bedell, Bell System Technical Journal, 8, i, 1928.
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The authors suggest three practicable methods of obtaining Zi by
the use of the above equation: (i) by measuring the pressure in

phase and magnitude at two points in the tube, (2) by measuring
the maximum and minimum pressures at different points along the

tube, the length being maintained constant, and (3) by measuring
the maximum and minimum values of the pressure at one point,

e.g., the source, while the length of the tube is varied. The results

quoted in their article are actually obtained by the third method.

They are naturally more interested in the absorption coefficient,

which is closely related to the impedance.

8-4. Measurement of Sound Intensity. Resonance Methods.

The classical method for the measurement of sound intensity is

undoubtedly that employing the Rayleigh disc. 1 The fundamental

fact is that a light disc suspended in a tube through which sound

waves are passing tends to set itself so that its plane is perpendicular
to the direction of particle displacement in the wave. It is further

found that if the disc is suspended so as to lie in equilibrium at a

definite angle with the axis of the unexcited tube, the angle through
which it turns on the passage of the waves is proportional to the

intensity of the sound. Konig
2 showed that if the original angle

of repose of
the^

normal to the disc with respect to the axis of the

tube is 6 and j? is the average value of the square of the particle

velocity, the moment tending to decrease 6, when the sound passes,

is given by

Af = po**? sin 20, (87)

if a is the radius of the disc and p the density of the medium. It is

clear that this is a maximum for 45, thus indicating the

optimum setting. This instrument works best at resonance when

its sensitivity is greatest, and for that reason may be called a

resonance instrument. Thejrioment M can be measured by means
of a torsion suspension and 2

is at once a measure of the intensity
of the sound.3

1
Rayleigh, Vol. II, p. 44. See, also, Richardson, Sound, p. 215.

2
Konig, Ann. der Physik, 43, 43, 1891.

3
Recently a modification of the classical method of using the Rayleigh disc has

been proposed by L. J. Sivian (Phil. Mag., 5, 615, 1928). Instead of measuring the

steady deflection in a steady sound field, he modulates the sound amplitude with a

frequency equal to that of the free vibration of the suspended disc and then measures
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Another resonance instrument is the phonometer of Webster. 1

It consists of a cylindrical resonator tunable by length variation

over a wide frequency range with a tuned diaphragm mounted in

the resonator opening. The diaphragm is tuned to the sound

whose intensity is to be measured by varying the tension in the

wires supporting it. A small concave mirror is caused to rotate by
the diaphragm motion. Light from a lamp filament is reflected

from the mirror into a small telescope and the width of the band of

light observed in the micrometer eye-piece measures the diaphragm
motion. The pressure amplitude of the sound at the diaphragm is

proportional to the displacement amplitude of the diaphragm. The

proportionality factor can be calculated from the dimensions of the

various parts and the measurements translated into absolute units.

The hot-wire microphone of Tucker and Paris 2 has been

extensively used in recent measurements (recall the work of

Richardson described in Sec. 8-3). If a fine platinum wire is

heated to red heat and exposed to the alternating current of air in

the neck of a resonator, there is a falling off in resistance which can

be used as a measure of the amplitude of the sound vibrations. For

small particle velocities the steady drop in resistance is found to be

proportional to 2
, and hence to the intensity of the sound.

It is evident that the general type of resonance instrument

consists of a small sensitive object (i.e., diaphragm, disc, hot-wire,

etc.) placed at the mouth of a resonator. This object must be such

that the fluctuating air current at the mouth will markedly disturb

its state of motion or physical properties. The change of state can

then be observed in a variety of ways, i.e., mechanically, optically,

electromagnetically, etc.

8-5. Measurement of Sound Intensity. Comparison Methods.

If it is desired to measure the intensity of sound produced in the

neighborhood of a given source, say an electrically operated loud

speaker, it is possible to do so by allowing the current that actuates

the speaker to pass through one coil of a mutual inductance which

is coupled to a secondary, the e.m.f. generated in which can produce
a deflection in a galvanometer via an amplifying circuit. This

circuit is also arranged to measure the e.m.f. induced in a telephone

the amplitude of the oscillations corresponding to the modulating frequency. In many
practical cases this leads to a gain in absolute sensitivity.

1 A. G. Webster, Proc. Nat. Acad. Sci., 5, 173, 1919.
2 Tucker and E. T. Paris, Roy. Soc. Phil. Trans., 221, 389, 1921.
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receiver (magnetophone) placed in the sound field of the loud

speaker. The plan followed is to take a galvanometer reading
when the receiver is in the circuit, and then to adjust the mutual

inductance of the two coils, so that with the receiver out of the

circuit the galvanometer reading is the same as before. The e.m.f.

induced in the receiver is then the same as that induced in the

secondary coil and, since the former is proportional to the square
root of the sound intensity at the receiver and the latter is pro-

portional to the current actuating the loud speaker and the mutual

inductance of the two coils, it is possible to express the intensity in

terms of this current and inductance and so measure it. This

method is a comparison method, since it involves the comparison of

two e.m.f/s, one of which is produced by acoustic transformation and

the other by purely electrical transformation from the same source. 1

A somewhat similar method uses ear comparison.
2 A known

fraction of the current actuating the source is used to operate a

receiver connected to the ear. The amount of current in this

receiver is adjusted until the sound from it appears (to the ear) to be

of equal intensity to the sound from the source. The intensity is

then proportional to the square of the current in the receiver.

This method is obviously limited to measuring relative intensities.

It has been applied to measuring the relative transmission of wave
filters (see paper above cited), and the measurement of acoustic

impedance described in Section 8-2 is based on a modification of it.

8-6. Pressure Measurements. For the older absolute measure-

ments of Altberg, Raps, Dvorak and others the reader is referred to

the literature,
3 as the details are too numerous to discuss here.

Among more recent measurements, however, should be mentioned

the interesting work of Barns,
4 who discovered that if a narrow tube

with a pin-hole orifice (generally in the shape of a cone) is inserted

in a vibratory air column, while its other end is connected to one

arm of a sensitive manometer, a measurable static pressure difference

(e.g., as much as 3 X io~4

atmosphere) is recorded when the pin-

1 For a more detailed account of measurements made with this method see J. C.

Karcher, Sci. Papers, Bureau of Standards, No. 473.
2 See G. W. Stewart, Phys. Rev., 20, 543, 1922.
3 For a good resume consult the Handbuch der Physik, Berlin, 1927, Vol. VIII.

Akustik, p. 572 ff. The approximate equivalent in English will be found in the recent

book Sound by E. G. Richardson, London, 1927, p. 218 ff.

4
Science, 53, 489, 1921; 65, 329, 1927. Also: Acoustic Experiments with the Pin-

Hole Probe and The Interferometer U-gauge. Carnegie Institution of Washington, 1927.
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hole is at a displacement node (or pressure loop). This provides a

direct experimental method of exploring the pressure distribution

in a sound field. For a manometer, Barus uses his interferometer

U-gauge in which the depression of the mercury surface due to the

acoustic pressure is measured optically by interferometric means.

Sabine 1 has used the pin-hole probe to explore the sound field in a

closed space like a room. Though the action of the probe is

probably associated with vortex motions, the theory is unfortunately
not completely understood.

In connection with the measurement of sound intensity by
means of pressure, attention may be called to the recent null

method of Gerlach,
2 who compensates the pressure on a diaphragm

due to the incident sound wave by measurable electrodynamic

forces, so that the diaphragm remains at rest under the two effects.

The magnitude of the electrodynamic effect necessary to bring this

about is then a measure (when translated into mechanical units) of

the sound pressure and hence the intensity.

A more recent method resembling somewhat the compensation
scheme of Gerlach is that of Smith 3 who has devised a plan of

measuring sound intensity, particularly under water. The essential

idea is to obtain a balance between the effect produced on a sensitive

amplifying circuit (connected with a receiver) by the sound wave to

be measured and the effect of a known small e.m.f. of the same

frequency as the sound. The receiver used is of the moving coil

type and the effect considered is the deflection of a vibration

galvanometer. When the balance is attained, the relation of the

force F exerted by the sound wave on the receiver and the balancing
e.m.f. E is

F =

where Z is the total mechanical impedance of the receiver for the

given frequency, and H is the intensity of the magnetic field in

which the coil with total length of wire / moves.

8-7. The Condenser Transmitter and the Ribbon Microphone.
The former instrument is thoroughly described by E. C. Wente.4 Its

essential features are briefly indicated in the following diagram (Fig.

s. Rev., 23, 116, 1924.
2 Wiss. Verofft. der Siemens-Konzern, 3, 139, 1923. An account is also to be found

in Richardson, loc. cit., p. 220.

3 F. D. Smith, Proc. Phys. Soc. of London, 41, 487, 1929.
4 E. C. Wente, Phys. Rev., 10, 39, 1917; 19, 498, 1922.
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8*5). The diagram MM' is a thin stretched membrane which is at-

tracted towards a metal "damping" plate P by means of a static

charge. The form assumed by the membrane is nearly paraboloidal.

Sound waves impinging on the diaphragm vary the capacity of the

system, thereby producing a

small alternating current in the

circuit of which MM' and P
are a part. This current must

be amplified to be measurable.V///////////I
Q

FIG. 8-5.

The stiffness of the membrane
is made great enough, so that

the first natural frequency is

very high, leaving a wide range of frequencies throughout which it

will vibrate in its fundamental mode. The region AA' is a very

thin film (of order icr3 cm thick), contributing materially to the

stiffness and damping of the membrane. For low frequency vi-

brations the air escaping via A and A' provides increased viscous

dissipation, while for high frequencies the air does not have time to

escape, so to speak, and the accumulated pressure increases the

stiffness of the system. Hence we may say roughly that we have

here a system whose stiffness increases with the frequency, while

the damping resistance coefficient decreases with the frequency.

The total stiffness is, of course, the sum of the intrinsic mechanical

stiffness of the diaphragm and the extra stiffness due to the air film.

The same is true of the resistance. Now the absolute value of the

impedance of the system (see Sec. 2-2) is

. + (*
-**

where /? and Ra are the intrinsic and additional resistances,

respectively, and/ and/a are the corresponding stiffness coefficients.

For frequencies far below the first resonance frequency, this reduces

to

From the way Ra and/a change with the frequency it is found that

the change in impedance (over the low-frequency range at any rate)

is not so marked as it would be for a system with constant R and/.
This is well brought out in the calibration curve of a typical instru-
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ment shown in Fig. S'6.
1

Actually this represents the mean curve

for eight instruments very nearly alike. It is to be noticed that the

sensitivity as measured by the change in potential in millivolts per

dyne per cm
2 excess pressure is reasonably uniform over a range of

frequencies from about

500 to 5000 cycles and

changes only by 100%
over a range twice as

great. When used with

an amplifier whose sensi-

tivity decreases appro-

priately with the fre-

quency, it is seen that a

system is available pos-

0.7
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FIG. 8-6.

sessing a remarkably uni-

form sensitivity over a

wide range of frequencies.

The use of amplification

is essential. A more elaborate diagram showing the actual con-

struction of a condenser transmitter is

shown in Fig. 8-7.

An electrodynamic instrument of great

sensitivity is the ribbon or band micro-

phone of Gerlach and Schottky,
2 which

consists of a light metallic (e.g. aluminum)
ribbon suspended in a strong magnetic field.

The vibration of the ribbon due to an in-

cident sound wave leads to the induction

of an e.m.f. corresponding to the undula-

tions of the wave. The ribbon is driven

from its equilibrium position by the differ-

ence in pressure existing between the two

sides. It is so thin that its mechanical im-

pedance can be made comparable to the

acoustical impedance of the sound wave in

the air at around 4,000 cycles. Hence for

frequencies below this value the ribbon will

follow very closely the motion of the air particles in the sound

1 This and Fig. 8-7 arc taken from E. C. Wente, Phys. Rev., 19, 498, 1922.
' E. Gerlach, Phys. Zs., 25, 675, 1924, W. Schottky, Phys. Zs., 25, 672, 1924.

FIG. 87.
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wave. This instrument requires amplification, but is now being
made commercially and is in actual use.

8-8. Membranes and Diaphragms. Most sound generators of

practical use involve the vibration of a membrane or diaphragm and

it is therefore of importance to review briefly the salient facts about

these vibrators. The theory of the vibrations of a stretched

membrane will be found in Rayleigh
1 and will not be given here in

detail. We are mainly interested in the practical application of the

vibrations of the circular membrane or diaphragm. Moreover, it is

essential to note that few diaphragms used in practice are really

membranes in the strict sense of the word but are rather plates. It

is therefore desirable to emphasize the differences between the

vibrations in the two cases.

Considering first the free vibrations of a circular membrane, it is

well known that the general differential equation for the normal free

vibration displacement , which is

V2 =
^, (8-8)

reduces for this case to the form

one solution for which in terms of Bessel's functions is for the case

where is a harmonic function of the time 2

= AJn (kr) cos n(0 + a) cos (/ + e), (8-10)

where k = co/r, r is the distance of the point whose vibration is

being considered from the center of the membrane, n is an integer, 9

is the angle r makes with a given polar line, A^ a and e are constants,

and c = velocity
= V7

1

/ p, where T is the tension and p the surface

density. If the membrane is fixed at the periphery, where r = #,

the radius, we have the additional boundary condition that

Jn(ka) = o, (8-1 1)

and this serves to fix the allowed values of k and hence the natural

frequencies of the membrane. The complete solution of the eq.

(8-9) will then be formed by summing for all values of n and k.

1 See Rayleigh, Sound, Vol. I, p. 306. See also Lamb, Dyn. Theory of Sound, p. 141.
2 See Rayleigh, Vol. I, 201.
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For example, for the lowest mode of vibration, for which n o,

corresponding to motion symmetrical with respect to the center, we
have for the roots of (S-n) in order of magnitude

ka = .76661:, 1-757^

thus fixing the corresponding frequencies at

= .766
,

I.7C7 . 2.7CC (8-12)1 ' n/ ' n * ^ 'V

As above stated, the velocity c is a constant quantity and is de-

pendent solely on the tension in the surface of the membrane

(tension per unit length on the surface) and the surface density

(mass per unit area).

In Section 2-2 it was found that the resonance frequency of a

vibrating membrane treated as an ideal moving piston is given by

where/ and m denote stiffness and mass, respectively. It was there

explained that m is, however, in this case not the total mass of the

membrane but only the effective mass. By forming the integral for

the kinetic energy amplitude, viz.,

= i r

and substituting for from (H-io), taking the simple case for which

n = o and using the first approximation whereby

(8-14)

i.e., the membrane has an approximately paraboloidal shape, it is

found that

where is the velocity amplitude at the center of the membrane.

It is clear, then, that the effective mass is approximately one-third

of the total mass. In similar fashion if we calculate the total

potential energy amplitude,
1
viz.,

1 See Rayleigh, loc. cit., Vol. I, 194.
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using the same approximation, we arrive at

so that the effective stiffness is 27rT. And indeed if we now de-

termine the fundamental frequency

we find

1.22

ira

which differs from the first of the frequencies (8-12) by only slightly

more than i%. So far as vibration in the fundamental mode is

concerned, it is then possible to replace the membrane by an equiva-
lent piston with mass one-third of the total mass of the membrane
and stiffness equal to the tension of the membrane multiplied by 2?r.

Examination of (8-10) shows that there are present on the

membrane certain nodal lines
',
where no motion takes place. These

are of two kinds, concentric nodal circles with radii given by the

equation
7(*r) = o (8.19)

and nodal diameters given by

g + = (a"+ l)r
. (8-20)

where m is an integer. These diameters are n in number and are

ranged uniformly about the center, their position in other respects

being arbitrary. The following figure (Fig. 8-8) indicates the nature

of the nodal diameters and circles for a few special cases. Each

diagram is accompanied by the appropriate pair of values of n and j,

where s is the number of nodal circles including the circumference.

The significance of s is seen when we consider that, if the roots of

/(**) =
Jn(z) = O (8-21)

are arranged in order as
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the radii of the corresponding nodal circles will be

The presence of these nodal circles indicates the existence of radial

standing waves traveling with velocity c. It might be questioned
whether the wave length of these waves bears any simple relationship

to the radii of the nodal circles. As a matter of fact examination

of the roots of (8-19) does disclose that for small values of n the

differences between the radii of successive nodal circles are ap-

proximately equal to each other and to a half wave length of the

radial wave concerned, (See Fig. 8-8.) For given n this approxi-

W--0

FIG. 8-8.

mation improves with increasing order of the roots of (8-19). On
the other hand the existence of the nodal diameters for n ^ o

indicates the presence of circumferential standing waves bearing no

simple relation to the former and where the nodal lines no longer

1 See Rayleigh, loc. cit.
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have the same simple significance. This is an illustration of the

fact that the relation between wave length and distances between

nodes which appears in plane stationary waves is not of general

application. The consideration of the division of waves into radial

and circumferential waves is merely for the purpose of clearness and

is not of course strictly accurate. A perfect membrane, without any

irregularities whatever, might have solely cylindrical waves. But

any lack of complete uniformity would immediately cause the waves

to travel in every conceivable direction. On the other hand solely

circumferential waves are not at all possible, as a simple considera-

tion of the spreading of waves would indicate.

The number of natural frequencies of a circular membrane is

relatively dense in any frequency range above the fundamental.

Thus in the first three octaves above the fundamental there are

forty-four natural frequencies.
1 This means marked resonance

action over a wide range.
With regard to the forced oscillations of a circular membrane the

usual resonance phenomena are in evidence. To avoid the nodal

lines associated with the overtones, it is often customary in practice

(as for example in the condenser transmitter) to drive the membrane
at frequencies below its fundamental. The latter can be made as

high as necessary by increasing the stiffness.

The influence of the medium on the vibrations of the membrane
will be treated in a later section (see Sec. 106).

Let us now consider the vibrations of a thin plate. Here again
we confine ourselves to the circular form. The fundamental

differential equation of motion for free vibrations, deduced on the

assumption that the middle layer of the plate is physically inex-

tensible, becomes 2

V 4 - ' 4 -
o, (8-22)

where

and
k'

4 =
coVf

4
, (8-24)

where

1 See Handbuch der Physik, Berlin, 1927, Vol. VIII, Akustik, p. 227.

2
Rayleigh, loc. cit., 217. See also 214.
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in which q is Young's modulus, ih is the thickness of the plate, n is

Poisson's ratio (i.e., the ratio of lateral contraction to longitudinal

elongation), and po is the volume density of the plate. The eq.

(8-22) may be written in the operator form

(V
2 -*'2

)(V
2 + *

/2

) =o, (8-26)

and its most general solution is obtained by adding together with

arbitrary constants prefixed the general solutions of the equations

(V
2 - *'

2

)
= o (8-27)

and

(V
2 + '2

)
= o. (8-28)

Now the second of the above equations, for the case where is a

harmonic function of the time, is of the same form as the eq. (8-8)

for the vibrations of a membrane in which the velocity is given by

e =
/*'

But the former of the two equations is not a wave equation at all.

Now the complete solution is the sum of the two separate solutions of

(8-27) and (8-28). Hence we are forbidden to think of the presence
of waves in the circular plate moving with definite velocity. Never-

theless there is a formal solution of (8-26) as given by Rayleigh
l

which can be put into the form

f = A cos (nO
- a)|/w (*r) + X/B (#r)} cos (f -

e), (8-29)

where X and k must be determined by the boundary conditions.

This leads to the conclusion that there exist n nodal diameters, as in

the membrane, given by the equation

cos (nO a) = o,

as well as the concentric nodal circles with radii given by

Jn(kr) + \Jn(ikr)
= o.

The determination of the natural frequencies is difficult. Kirchhoff

showed 2 that for frequencies for which the product ka (where a is

the radius of the plate) is large there follows, for a,free edge,

ka %w(n + in'),

l Loc. cit., 218.
2 See Rayleigh, loc. cit., 219.
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where n
f

is the number of nodal circles. But we must emphasize
that the actual vibrations in the plate are far more complicated
than the simple nodal lines would indicate. Moreover even

slight asymmetry of the plate causes the nodal system to move.

The telephone diaphragm is a thin circular plate clamped at the

periphery and driven by a periodic force. The symmetrical
vibrations are discussed by Rayleigh

l

following the theory outlined

above. As a matter of fact, in modern technology it is customary to

replace the diaphragm by an equivalent "piston" vibrator, all

points of which move together, i.e., have the same displacement at

any instant. This is, of course, justifiable only when the diaphragm
vibrates below its fundamental, so that all points move in the same

phase. In carrying out this replacement it is of course necessary to

ascertain the effective mass and stiffness of the piston vibrator, as is

discussed in the earlier part of this section for the membrane. This

is done by determining the mean velocity over the surface of the

plate. Such a calculation 2 shows that for the lowest symmetrical

mode of vibration =
.306 o> where o is the maximum velocity at

the center. We shall find it convenient to use the equivalent piston

concept freely in connection with the use of diaphragms as sound

generators for signalling purposes (Chap. X).

8*9. Modern Loud Speakers. For many years the telephone
receiver was the only practical device for transforming electrical

oscillations into mechanical ones. Today the same problem of

giving to the air mechanical oscillations corresponding to available

electrical oscillations is receiving much attention in the radio

industry. Essentially the problem of the transmission of mechanical

vibrations to the air is very old. It is difficult to convey the vibra-

tional energy of a solid body to the air, because an amplitude in the

air equal to that in a solid involves but a relatively small amount of

energy. Success was obtained centuries ago by the use of sounding
boards such as are found in all non-wind musical instruments.

Within the past century the stethoscope principle was applied in the

sound box of the telephone receiver and finally in the phonograph
and similar instruments. Elsewhere we have discussed (see Sec. 6-9)

the "loading" of a diaphragm by means of a sound box and horn.

We desire to give here a more extended discussion of the cone-type
loud speaker which is so common in the industry today.

1 Loc. cit., iCLia. Also see Crandall, loc. cit., p. 37.
2 For details refer to Crandall, loc. cit., p. 37.
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There are several important factors involved in the modern loud-

speaking art. They may be enumerated as follows: (i) the reception
and amplification of electrical oscillations, with retention of relative

magnitudes of the amplitudes of the various frequencies of interest;

(2) the transformation of these amplified electrical oscillations into

mechanical oscillations, again without distortion; (3) the distortion-

less coupling of the electrically actuated mechanical element to the

acoustic radiator or generator, and (4) the effective generation of

the aerial acoustic waves.

In each one of the four factors named in the preceding paragraph
there is opportunity for serious distortion. It is not desired to

emphasize here the electrical aspects, but attention should be drawn
to the fact that, even though the moving magnetic or electrodynamic
element of the loud speaker operates in a field that is ideal for the

purpose of generating the mechanical oscillations without distortion,

yet the nature of the mechanism including the magnetic vibrator,

the connection to the aerial sound generator and the generator

itself, determine whether or not the magnetic vibrator will follow the

changing magnetic field in the desired manner. This is because the

parts mentioned form a coupling between the magnetic armature or

moving coil element and the air itself. As has been shown in the

chapter on acoustic wave filters (see Sec. 7-11), we may have a

filter in solids and liquids as well as in gases. Any distribution

whatever of inertia and elasticity in a mechanical system will cause

that system to respond differently to oscillating forces of different

frequencies. In the aerial acoustic generator itself, there is dis-

tortion. Previous portions of the text (see Sees. 6-1 to 6-6) have

described the resonance frequencies of a horn or trumpet. With
short horns and frequencies in the acoustic range of speech and

music, the distortion caused by resonance is very marked. As the

horns are made longer, this distortion becomes less and less notice-

able.

At the present time the cone loud speaker is the most common
one in use. It is actuated at its vertex and the treatment of the

base of the cone varies in different instruments. The discussion

here will be confined to the case of the cone with a free edge. An

understanding of its manner of vibration can best be understood

from a study of the vibration of a thin circular plate, undamped and

actuated by vibrations conveyed to its center. We have already
discussed this in the previous section (Sec. 8*8) and may assume an
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understanding of the ideas presented there. The natural fre-

quencies of the cone may be studied in a manner analogous to that

pursued with the plate. Several new considerations arise, however,

that are worthy of mention.

First, while the vibrations of the flat plate are accompanied by

relatively slight extensions in the material, such vibrations normal

to the surface in a curved plate may involve relatively large ex-

tensions. This fact renders a curved surface, such as a cone, more

rigid to flcxural vibrations and consequently not so easily broken up
into nodes and loops. Second, if a curved plate is sufficiently thin,

flexural vibrations without extension may be the most important

type of vibration. This is appreciated if we consider the flexural

vibrations in a thin cylindrical plate. Oscillations may occur which

permit the length of the circumference to remain constant and the

form of the circumference to oscillate with the circle as its mean. If

we draw two oblong somewhat elliptical forms representing the two

extreme positions taken by the circumference, we note that the

simplest type of such a vibration involves four nodes and that at

these nodes there is movement tangential to the circle. Hence,

there may be purely flexural movements with no extension. This

type of movement may be expected to be important in the thin

conical plate.

From the above we might expect the cone to have natural

vibrations with nodes and loops which, in projection, much resemble

the patterns in a flat plate, with the nodal lines generators of the

cone and circles having points on the axis as centers. In order to

have flexure without extension the number of generatrix nodes is

even. These anticipations are borne out by experiment.

In a loud speaker the cone is actuated at the vertex with a

movement that is axial. The motion thus conveyed to the cone

may be separated into components, one normal to the surface and

one in a generator of the cone. The former would consist of

flexural waves accompanied by extension and the latter of exten-

sional waves only. Because of the rigidity of shape, a cone of the

same thickness will have a higher fundamental natural frequency

and hence higher corresponding natural frequencies than a flat plate.

Within the acoustic range, therefore, there would be fewer resonance

frequencies in the cone. But because of resonance the cone will

not convey to the air the same relative amplitudes of various

frequencies as in the vibratory movement given the apex. Dis-
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tortion will occur. To avoid this in part, electrical wave filters are

frequently employed to reduce the magnitude of the amplitude of

the electrical oscillations. 1

Obviously the shape of the generator
does not need to be conical. Some are conoidal.2 There are

various methods by means of which the conical acoustic generator

may be used. There may be a double cone, partially enclosing a

volume of air which has a loading effect. The base of the cone may
be supported by thin leather or rubber; it may vibrate between

felt, or it may have felt attached thereto, or it may be mounted in a

ring diaphragm. The selecting of a method may be determined by
trial and by the cost of manufacture. The shape and extension at

the edge of the cone are important because this surface forms a

"baffle." It not only acts as a reflector, but it assists in preventing
the air slippage from one side of the cone to the other. This

slippage reduces the pressure that would otherwise be developed by
the vibrating cone. Obviously its effect is more serious at low

frequencies. The difficulties involved in making a distortionless

loud speaker are inherent, as has been pointed out, and they can be

eliminated generally, not by direct removal, but by the introduction

of appropriate devices, such as electrical and mechanical filters.

But even if a distortionless loud speaker were constructed, it would

need to be operated so as to give the original acoustic intensity.

This statement is based upon the fact that the drumskin of the ear is

an asymmetrical vibrator (see Sec. 9*8) which magnifies the differ-

ence tones and hence the low frequencies. If the actual intensities

of all frequencies in a complex sound were equally increased, the ear

would increase the low frequencies relatively more than the others.

Hence the ear will, in general, introduce distortion. This leads to

the point that any acoustic vibrating diaphragm will introduce

frequencies other than those imparted and for several reasons. It

ceases to be a symmetrical vibrator when in actual use. Again, if

the vibrations are too large, it will rattle. Presumably, the latter is

caused not only by looseness of parts in the mechanism, but also by
the extreme distortions of the diaphragm itself. A bottom of an oil

can will snap from one stable position to another, giving off charac-

teristic sounds of the material. It seems that no study of the

1 Resonance effects may be reduced by the use of felt at the base of the cone and by
the viscosity of the material of which the curved surface is made.

2 For a more elaborate discussion of the vibration of curved plates in general see

Rayleigh, loc. cit., Vol. I, 1926, p. 395.
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extraneous noises of thin diaphragms has been made and the remarks

here made are merely indicative rather than specific.

From what has been stated it is clear that the smaller the cone

the less the number of resonance frequencies in the audible range.

Thus a cone having a few inches diameter at the base will give good

results if sufficient power is used to drive it. The flow of energy

to the air will of course depend upon the surface exposed. Also if

the cone is very large the resonance frequencies will be so numerous

and so distributed as to give good reproduction. But the ideal is

to avoid distortion entirely and two efforts in this direction will be

mentioned.

At present the condenser loud speaker promises to become

practicable. The advantage will be the use of the electrical

oscillations directly varying the attraction between two "plates"

and causing one to move in response. The object to be attained is

the motion of the "plate" as a whole, thus avoiding any resonance

distortion. With the absence of a distorting operating mechanism

and of resonance, the reproduction should be very good.

Dr. C. W. Hewlett 1 a number of years ago devised a loud

speaker in which the diaphragm moves as a whole between two flat

coils. His instrument is practically free from distortion, but

requires considerable power to operate.

It is not the purpose of this section to give a specific review of

loud speakers. For the literature concerning them the reader is

referred to the references quoted in Crandall's "Theory of Vibrating

Systems," pp. 246-247.
8-10. The Efficiency of Sound Generators. The acoustic effi-

ciency of a sound generator is the ratio of the acoustic output (that

is, the rate of energy flow in the wave train from the generator) to

the mechanical input. With the increasing use of sound sources for

many practical purposes such as signalling, etc., it has become

important to consider ways of measuring this quantity, as well as

means of increasing it for given types of generators.

King
2 has studied compressed air generators (i.e., whistles and

sirens) and found that the efficiency may be expressed by the simple

formula
_ y

<*- "" ' (8
'

3o)17
=
D-

1 Radio Broadcast, 7, p. 508, 1925.
2 L. V. King, Phil. Trans. Roy. Soc., y/2i8, 223, 1919.
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where T and T\ are the absolute temperatures of the air on the low-

pressure and high-pressure sides respectively, p$ and p\ are atmos-

pheric pressure and operating pressure respectively, and 7 = 1.41,

the ratio of the specific heats for air. The efficiency thus increases

with the temperature difference between the two sides and decreases

with the operating pressure. All the quantities entering into the

expression are easily measurable. For example, the temperature
difference may be as high as 5 C. and can be measured by a portable

thermopile.
The membrane or diaphragm is probably the most important

practical sound generator now in use for low-frequency work. It

will be shown in Section 106 that, if we consider the diaphragm

replaced by an equivalent piston, all points of which have the same

displacement velocity, the average rate of radiation of sound from

one side of this diaphragm into a semi-infinite medium of density p

is

where a = the radius of the equivalent piston and
| |

2
is the square

of the maximum displacement velocity. By the use of a formula

essentially like the one above, King
l has measured the efficiencies of

telephone receiver diaphragms and has found values ranging from

6 X io~6 at 400 cycles to 4 X io~3 at 1000 cycles. The improve-
ment of telephone receivers from the standpoint of efficiency is an

important problem.
The efficiency of the Fessenden oscillator described in Section

107 and used for subaqueous sound signalling has been rated as

high as 50% with an output of 500 watts.

It may be of interest to note that Sabine 2 has measured the

acoustic output of various musical instruments. For example, that

of a violoncello at 128 cycles was icr4
watt, while at 650 cycles it fell

to io~6 watt, A good violin gave out a uniform output of 6 X io~5

watt over a frequency range from 200 to 1300 cycles. The actual

acoustic efficiencies were not measured.

A precision source of sound which has been studied extensively
in recent years is the thermophone. If alternating current is passed

through a very thin conductor, the periodic heating gives rise to

periodic temperature changes in the medium near the wire and

1 L. V. King, Jour. Frank. Inst., Vol. 187, p. 611, 1919.
2 P. E. Sabine, Phys. Rev., 22, 303, 1923.
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sound waves are produced of a frequency double that of the alter-

nating current. This instrument has been investigated by Arnold

and Crandall,
1 and more recently by Wente.2 The acoustic

efficiency can be quite readily calculated from the output as meas-

ured by a condenser transmitter and the input of electrical energy.
It is found to compare favorably with electromagnetic and electro-

static devices except in the vicinity of their resonant frequencies.
More important, perhaps, is its ease of adjustment and its constancy
of response over long periods of time. Moreover the reactions of the

medium on the source, so important in connection with diaphragm
sources, are here negligible.

The enormous development of the radio industry has led to

considerable research on methods of improving the efficiency of

the driving units of loud speakers. Until very recently the average

efficiency of such devices has been about i%. Recent studies at

the Bell Telephone Laboratories,
3
however, have led to the develop-

ment of a diaphragm unit which, when coupled to an "ideal" horn,

i.e., one which has at its throat the same acoustic impedance as a

tube of infinite length, yields an efficiency of practically 50% over a

frequency range from 70 to 4000 cycles. Moreover, there is little

variation of efficiency with frequency over this range, which is a

condition of much more importance in the quality of reproduction.
It is interesting to note that the efficiency of this unit was determined

by measuring the acoustic output directly, that is, by observing the

excess pressure produced in an equivalent "infinite" tube attached

to the throat. The input, of course, is measured electrically.

QUESTIONS AND PROBLEMS

i. Given a circular sheet steel membrane of thickness .005 cm
and radius 2 cm clamped about the edge and held with a superficial

tension of 5 X io7
dynes/cm. Calculate the first, second and third

natural frequencies of the membrane. What is the effect on these

frequencies of assuming a damping factor per unit area

n dynes sec I 3
Ri = 200-^ ?

cm cm2

Calculate the logarithmic decrement or decay modulus for this case.

1 H. D. Arnold and I. B. Crandall, Phys. Rev., io, 22, 1917.
2 E. C. Wente, Phys. Rev., 19, 333, 1922.
3 E. C. Wente and A. L. Thuras, Bell System Technical Journal, 8, 140, 1928.
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2. Develop the theory of the condenser transmitter (see Crandall,

p. 29) and emphasize the physical significance of the results.

3. A condenser transmitter system has a disc of effective (piston-

like) radius = 1.63 cm. The mean separation distance of disc and

damping plate is D 2.2 X io~3 cm. Calculate the extra re-

sistance coefficient and the extra stiffness coefficient due to the air

damping at the center of the disc. The resistance coefficient of the

air is R =
I2/I//)

2
,
where M coef. of viscosity

= 0.000186 c.g.s.

units at 20 C. Take atmospheric pressure as 10 dynes/cm
2

.

Carry through the computation for the frequencies 1000, 2000, 4000
and 6000 cycles.

4. Using the data in question 3, calculate by integration the

average stiffness and the average resistance due to the air damping
over the whole disc for the frequencies stated.

5. Discuss the problem of measuring the acoustic impedance of

the external ear at the entrance into the meatus. Describe the

difficulties involved and the reason for the method you select.

6. Carry through the derivation of eqs. (8-15) and (8-17) of

Section 8-8.



CHAPTER IX

PHYSIOLOGICAL ACOUSTICS *

9-1. Energy Flow in Speech. The energy flow in speech is

very far from constant. In a study by Sacia 2 it is shown that the

mean power for a syllable by a speaker may be of the order of 60 to

1 20 microwatts, while in the same syllable the peak power may be as

great as 1000 to 2000 microwatts. Sacia found that the mean

power per sq. cm in what might be called normal speech is about 7
microwatts at a point 9 cm from the mouth, when the mean is taken

over the whole length of time. In these tests the average ratio of

the total time in the silent gaps to that consumed by the syllables is

0.55.

9-2. Energy in Speech Sounds. The relative powers in arbitrary
units were found by Sacia and Beck 3 for a number of vowels and
consonants and these are presented in Table I. These indicate that

the vowels rank the highest, the semi-vowels next and the consonants

the lowest. They show that there is no fixed relationship between

mean and peak power. For example, a as in tap has a peak power
that is six times its mean power as given and consequently may be

guilty of overloading an electrical circuit adjusted for the mean

power in conversation. For the meaning of "articulation" Section

9-4 should be consulted.

9-3. Nature of Speech Sounds. For many years it was not

definitely known whether sustained vowel sounds owe their peculiar

quality to the relative pitch of the fundamental and overtones, or to

the fixed pitch of the characteristic tones or overtones. Professor

D. C. Miller 4 settled this matter most conclusively by showing

experimentally that the peculiar quality of a sustained vowel

depends to a large extent, upon certain frequency regions, irre-

spective of the fundamental tone used. The most complete study
1 The material in this chapter is abbreviated, since a recently published work

(Fletcher, Speech and Hearing; D. Van Nostrand Co.) covers the field much more

adequately than could a book of this compass.
2
Sacia, Bell System Tech. Jl., IV (1925), p. 627.

3 Sacia and Beck, Bell System Tech. Jl., V (1926), p. 393.
4
Miller, Science of Musical Sounds, Macmillan, New York, 1916.

216
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TABLE I

SPEECH SOUNDS

Relative Power, Arbitrary Units

Note: The dash indicates that observations were not available.
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yet made of the distribution of energy among the frequencies for the

different vowels is that published by Crandall. 1 A vowel is not the

same throughout its duration. For example, the vowel oo as in

pool, in the case of one speaker, required 0.5 sec. to build up.

12& i&t 256 $6* 512 724 1024 1446 zo4& 289640$539*

Frequency Female

FIG. 9-1.

There was a middle period of 0.20 sec. followed by a period of decay
of 0.31 sec. Without giving the details of the analyses of the

recorded curves for the vowel sounds in speech, it may be understood

1
Crandall, Bell System Tech. JL, IV (1925), p. 586. Figures 9-1 and 9-2 are taken

from this source.
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that the records for the entire duration of each vowel were used and
the component frequencies were ascertained by a mechanical method
of analysis. A group of eight records was made of each vowel

sound, four with men and four with women. The results are

expressed in the form of curves shown in Fig. 9-1. The full line

curves are for the male and the dotted for the female. The curves

represent the relative importance of the amplitudes at the different

frequencies when the variation in sensitivity of the ear with

frequency is taken into consideration. It is noted that, in general,
the frequency regions of importance are numerous. In a as in

father there is a broad continuous or single region. In a, i and e

there are two very distinct regions. The differences between the

64 go 128 181 256 362312 724 1024 1448 2048 t&fi 4096 5792

Male Frequency

FIG. 9-2.

male and female curves are probably caused by the differences in the

fundamental tone upon which the vowels are sounded rather than by
differences in the resonance cavities. It is to be borne in mind

that the resonances of the larynx, pharynx, mouth and nose are

the cause of the large amount of energy obtained from the vocal

cords and also account for the ability to make the characteristic

sounds of speech. In addition to the eleven vowels, two of the

semi-vowels are shown in Fig. 9-1. Four others are given in Fig.

9-2. Fletcher,
1 after considering the work of Stumpf, Miller,

1
Fletcher, Speech and Hearing, loc. cit., p. 58.
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Paget and Crandall, has compiled Table II, showing the charac-

teristic frequency region for the vowel sounds. Table III indicates

the frequency regions for the consonants r, 1, ng, m and n.

TABLE II

CHARACTERISTIC FREQUENCY OF THE VOWEL SOUNDS

TABLE III

It should be observed that the foregoing contains merely the

barest outline of the physical causes of the differentiation of vowel

sounds. A source and resonating chambers exist. Further details

would involve not only the influence of resonance chambers on sus-

tained sounds but also on impulsive and rapidly varying sounds.

Moreover, the vocal chords are by no means a simple type of

reed and the walls of the spaces involved are not rigid and stationary.

In fact the production of speech is very complicated and involves

acoustical phenomena that are well within the range of the ear,

but yet not discernible by it. For example, there is a marked

difference between the vowel in eat and in meat, the higher fre-
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quencies sliding upward in the latter at the beginning of the vowel.

Yet this change in pitch is not recognized by the ear. What

might be termed fairly complete studies of speech must be made

by physical measurement and must involve many facts that are of

no importance to the air but of great value in securing a desirable

background for phonetics.

9-4. Frequencies Important in Speech. Valuable information

has been obtained by Fletcher 1

concerning the relative importance
of frequencies in English speech. This importance was determined

by the "articulation" or the percentage of syllables understood in

selected lists of syllables. The following interesting conclusions

may be drawn from Fletcher's experiments:
1. The importance of frequencies higher than 1550 cycles is

just as great as that of those below this value.

2. If only frequencies below 1000 cycles are eliminated, the

articulation is 86%.

3. If only frequencies below 1000 cycles are used, the articulation

is 40%-
4. Eliminating all frequencies below 1000 cycles gives the same

articulation as eliminating all those above 3000. The curves

showing these and other conclusions are given in Fig. 9-3.
2

EFFECT UPON INTERPRETATION OT ELIMINATING

VARIOUS PORTIONS OF "THE FREQUENCY RANGE

2000 3000

FREQUENCY

FIG. 9-3.

9-5. Minimum Audibility. Apparently the most reliable values

for the minimum audible pressure in dynes per sq cm are as follows: 3

1
Fletcher, Bell Sys. Tech. Jl., I (1922).

2 This and Fig. 9-4 are taken from Fletcher, Bell Sys. Tech. JL, 4, 375, 1925.
3
Fletcher, Bell System Tech. JL, 4, 375, 1925.
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The values refer to the r.m.s. values of pressure and can be made

to yield the flow of energy in ergs per sq. cm per second by the fact

that the latter is the square of the former divided by pQc (see Sec. I 1 5)

or by approximately 42 in c.g.s. units. If one desires the values in

microwatts per sq. cm, E, the transforming equation is p
2 =

lo.$E.

It is observed, then, that the ear is remarkably sensitive, detecting a

changing pressure of approximately Vi X io~3
dyne or a flow of

energy of about 5 X io~8 microwatt. If one had a source of sound

radiating I watt per second and if the flow varied inversely as the

square of the distance, then at a distance of 13 km the flow would be

approximately 5 X io~8 microwatt. The values in the above tables,

the results of experiments with almost 100 ears, may be considered to

refer to the normal ear. It is to be observed that the threshold

pressure refers to the pressure at the ear and not in the approxi-

mately plane wave in the absence of the head. The head would

approximately double the pressure for very short wave lengths and

would increase the pressure to some degree even for low frequencies.

9-6. Limits of Audibility. A sound may be too faint to be

heard and it may be intense enough to cause pain. There is then a

maximum pressure limit for audibility as well as a minimum. The

observations on this maximum have been made only with ears that

are approximately normal. With this limitation one can apply the

results of Fletcher and Wegel
l as shown, in Fig. 9*4. Half of the

observations lie within the dotted curves. The frequency limits of

audibility as shown are arbitrary, the variation with different

individuals being too wide to have an acceptable norm. As a guide
to the relation between common observations of deafness and the

values of the r.m.s. pressures in dynes, Fletcher and Wegel
2 state

that persons called "slightly deaf" require a pressure variation from

the normal of about o.i dyne (r.m.s.) per sq. cm, that a person

requiring i.o dyne (r.m.s.) per sq. cm can usually follow ordinary
conversation and that those who require 10 dynes (r.m.s.) per sq. cm

1 See Fletcher, Bell System Tech. JL, loc. cit.

2 Fletcher and Wegel, Phys. Rev., 19, p. 553 (1922).
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require artificial aids to hearing. In this connection it may be

said that studies in deafness in various parts of the sound spectrum
are being made at various laboratories with the expectation that the

results will serve as a means of detecting approaching noticeable

deafness and the location of the cause.

. _ . . . _
6 16 TOL 64 128 256 5IZ 24 2046 4096 8192 16304- fRCQUENCY 0V
300 400 300 000 700 000 900 1000 1100 1200 OOO 1400 PITCH UNIT).

FIG. 9-4.

9-7. Loudness. Loudness is a sensation and its measurement

in terms of physical values is not at all simple. It is a topic dis-

cussed at length in psychological literature. Our consideration will

be limited to certain recent experiments. MacKenzie 1 has performed

experiments on the relative sensitivity of the ear at different levels

of loudness and his results are in conformity with the equation

S = c logiop + a,

wherein S is the sensation of loudness, p is the excess pressure and c

and a are parameters dependent upon the frequency, although c

varied not more than 10% over the range of frequencies tested, 100

to 4000. The range of loudness was from the threshold value to

20,000 times that value. From the equation it is obvious that a

is a function of the threshold pressure. For loud tones the value of a

is small in comparison with c logio/> and the sensation is practically a

logarithmic one. This accounts for the fact that the intensity of a

sound wave increases at a much greater rapidity than its loudness.

The law expressed in the preceding equation is sometimes called

Fechner's Law. MacKenzie does not experiment with the law in

1
MacKenzie, Phys. Rev., 20, 1922, p. 331.
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this form but derives a formula showing the relation of two pressures,

or

log pi
= + j logio p2

= A + B Iog10 pt.

This formula is verified and experimental values of A and B are

given, but not the individual values of a and c for each frequency.
For the sake of convenience several authors are using the terms

sensation unit and sensation level. They may be defined as

follows:

One sensation unit = 20 logio />,

The sensation level = 20 logio ,

po

wherein pQ is the threshold pressure. The sensation level is really

the number of sensation units required to reduce the tone to the

threshold limit. In Section 1-15 the decibel as a unit of power was

defined so that the number of decibels between the level /o (the

threshold) and the given level / is

a = 10 logio ///o.

But the power is proportional to the square of the pressure (see eq.

(1-50)) and hence

a = 20 logio p/po.

Thus the sensation level may be expressed in decibels.

The above discussion of loudness is by no means complete.
While MacKenzie's work has been largely superseded by more
detailed studies l

it presents a relatively simple aspect of the

phenomena. One of the complications that arises is the loudness of

complex sounds. Very interesting experimental contributions have

been made but the presentation of the results here would lead too

far from the purposes of this book.

9-8. Minimum Perceptible Intensity Difference. There is for

every frequency a minimum perceptible difference in intensity.

The most extensive results are those of Knudsen.2
They may be

presented as follows:

1 See Fletcher, Speech and Hearing, loc. cit.

2
Knudsen, Phys. Rev., 21, 84 (1923).
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SL is the sensation level and K is the intensity. Knudsen has also

shown that AE/E at any sensation level is practically independent of

frequency, varying only 10% from 100 to 3200 cycles. The state-

ment AE/E = a constant is really Fechner's Law. If it were

accurate, the logarithmic sensation law could be derived therefrom.

It is interesting to note that at 1000 cycles the ear can distinguish

about 400 gradations of loudness between the limits of intensity

within which the ear responds. The number of gradations decreases

above 2000 and below 1000 cycles.

The work of Riesz 1
is fairly in accord with that of Knudsen,

but modifies the result that AE/E is independent of frequency.
Riesz shows that for frequencies up to 10,000 cycles the latter is

approximately correct for sensation levels above 50 decibels.

He found that

AE/E = $ + (SQ
-

will represent AE/E as a function of intensity. *?< is the value of

AE/E at high intensities, S the value at the threshold and 7 is a

number. These constants, varying with frequency, may be ex-

pressed as follows:

S = .0000157 + i26/(8o/-
5
+/),

SQ
=

0.3 + o.oootf + i93//-
8
,

7 = 244ooo/(358ooo/>'
125 + P) + 0.65/7(3500 +/),

where the frequency is here indicated by/.

9-9. Pitch Differences and Pitch Levels. According to Knudsen

(see preceding reference) the average single ear can just appreciate
a difference of 0.5 cycle at 50 cycles, 0.66 at 100 cycles, 1.6 at 500

cycles, 3.0 at 1000 cycles, and 9.0 at 3000 cycles. It has been

proposed to adopt a "pitch level" analogous to "intensity level"

and "sensation level" earlier mentioned in this work. The ex-

pression suggested is

where P is expressed in octaves and/ in kilocycles.

1

Riesz, Phys. Rev., 31, 867 (1928).



226 ACOUSTICS

9'io. Summation and Difference Tones. When two frequencies,

n\ and n 2l are present, several interesting phenomena occur. The
two vibrations combine into one of varying intensity, especially
noticeable when n\ and ;/ 2 are nearly equal, and the well known def-

inite
"
beats" are produced. It is interesting that the mean pressure

is not the same throughout the fluctuation of intensity. For Rayleigh
showed l that a plane wave of sound striking a wall normally will

exert a mean excess pressure. This pressure is determined by the

energy per unit volume of the incident acoustic wave. In fact it is

lE, where E is the energy per unit volume. It is this pressure that

fluctuates with the frequency (#i 7/ 2). But this pressure, when

computed for any ordinary case, proves to be too small to cause any
sensation in the ear. Nevertheless the ear can detect a "difference"

tone having the frequency (t ;/ 2). In fact, a summation tone of

frequency (n\ + #2) can also be heard. But this is not all. Multi-

ples of these combination frequencies may also be heard. The

explanation is to be found in the nature of the ear drumskin. It is

an asymmetrical vibrator. That is, the displacement for a given

pressure variation is not the same in the positive as in the negative
direction. In Appendix VI it is shown that an asymmetrical
vibrator will, when actuated by a combination of two simple
harmonic forces of frequencies n\ and 7/2, vibrate with multiples of

these frequencies and also of combination frequencies. Wegel and

Lane,
2
using n\ = 1200 and ?/ 2

=
700, have heard the following

frequencies: 7/1, w 2 , ;/i + w 2 , ;/i w 2 , 2;^, 2;/ 2 , 3i, 3?/ 2 , 2;/i + 7/ 2 ,

27/i n z ,
277 2 + Hi, 2tt 2 7/i, 47/0, 27/i + 2fto, 27/i 27/ 2 , 3^1 + 7/ 2 ,

377 1 77 2 , 37/2 + MI, and 37/2 n\. All these can be accounted for

by assuming the displacement of the drumskin is expressed in

terms of the first, second, third and fourth powers of the actuating

pressure. The only frequency predicted by the asymmetry theory
and not detected was 47/1. As might be expected, the asymmetry of

the vibration of the drumskin decreases with decreasing amplitude
of vibration.

9-1 1. Theories of Audition. Physiological processes should of

course be interpreted ultimately in terms of physics and chemistry.

But the road to a satisfactory interpretation of audition has been

long and the end of the journey is not yet in sight. Fletcher 3 seems

1 Phil. Mag., 3, 338, 1902.
2
Wegcl and Lane, Phys. Rev., 23, 266, 1924.

8
Speech and Hearing, loc. cit.
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to adopt an
"
extension

"
of the Helmholtz theory and to accept the

existence of resonance of the basilar membrane, though endowing it

with much damping. He concludes that experiments of today favor

the theory that loudness depends upon the "total number of

nervous discharges coming to the brain" and that these are de-

pendent upon "the number of nerve fibers stimulated and the

intensity of stimulation of each one." The recognition of pitch,

according to Fletcher, depends upon characteristic frequency regions
of the basilar membrane. When the maximum stimulation occurs

in a certain region of the basilar membrane, the pitch recognized is

that corresponding to this region.

A very different view is held by Meyer,
1 who advocates what

might be termed the "hydraulic" theory. He has set up an

equation "describing the hydraulic functions of the mammalian
cochlea." By the use of this equation he is able to show agreement
with auditory observation and with experimentation on a large

transparent hydraulic model. Meyer would agree with Fletcher

that loudness depends upon the number of cells stimulated, but he

holds that "the nature of the stimulation and accordingly the

quality of the chemical process resulting in each of the sensitive

cells" determines the sensation quality or pitch.

More recently
2 two somewhat similar theories of hearing have

been presented by L. T. Troland and Harvey Fletcher. Only a

brief reference can be made to the fundamental physical difference

in view. Troland adopts the time pattern view of the dependence
of the sensation of pitch upon the time nature of the stimulation.

Fletcher also adopts this view but adheres to the resonance

feature or the importance of the position of excitation on the basilar

membrane. He calls his contribution a "space-time pattern

theory." It seems clear that a thoroughgoing biophysical and

biochemical study of the auditory nerve process is imperative.

Only a considerable progress in this direction will remove present
serious barriers to the further development of theories of hearing.

9-12. Binaural Effects. It is known to all that the ears can

localize the direction of a source of sound to a distinct extent. A
source on the right of a plane bisecting and normal to the line

joining the ears (hereinafter called the median plane) can be

1 Max F. Meyer, Jl. of Gen. Psych., i, 139, 1928, and numerous other publications

by the same author therein mentioned.
2 At a meeting of the Acoustical Society of America, December, 1929.
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recognized as on the right. A simple explanation of the ability of

the two ears to locate sound in this manner might be that obviously
the source of sound appears to be on the side where there is a greater

intensity at the ear. This explanation was the one accepted for

many years, but must now be discarded. As will be shown, the

difference of phase at the two ears is more effective in localizing the

origin of the sound. But there is an effect caused by an intensity

difference at the ears, the phase being kept the same. Its magnitude
and its variation with the intensity ratio at the ears have been

studied, but not extensively. Stewart and Hovda l found that if

represents the angle made with the median plane by a line drawn in

the apparent direction of the sound-source, and if the experimenter

produces a sound intensity IR at the right ear and an intensity IL at

the left ear, both having the same frequency and the same phase,
then there is the following relation between the factors involved:

0= A'log,',
-LR

wherein K is a constant. The value of the constant differs 2 with

individuals and with the frequency. For example, for an observer

By the values of K for 256, 512 and 1024 cycles were respectively

30, 21 and 10. If one considers a source of sound removed at an

ordinary distance and computes what differences of intensity would

be produced at the ears by the source located at an angle 8 from the

median plane, it is found (see loc. cit.) that the above formula does

not express or explain the phenomenon of localization. In fact, it is

found that with observers generally the foregoing "binaural

intensity effect" ceases to exist in certain frequency regions wherein

there is no cessation of the localization ability.

If the intensities at the ears are maintained alike and differences

of phase are introduced, then there is an angular displacement of the

apparent sound source or phantom source from the median plane
and the following relation obtains between the angular displacement,
B

y and the phase difference, <p:

Again KI varies with frequency, but in a linear manner,
3 as is shown

1 Stewart and Hovda, Psych. Rev., XXV, 3 (1918), p. 242.
2
Stewart, Phys. Rev., XV, 5 (1920), p. 425.

3
Stewart, Phys. Rev., XV, 5 (1920), p. 425.



PHYSIOLOGICAL ACOUSTICS 229

in Fig. 9-5, which shows the variation in p/6 or A"i with frequency

for three observers. 1 Two significant things can be shown from

these experimental curves. First, the curves are what would be

predicted upon the theory that localization depends upon phase.

500
d v

FIG. 9-5.

1000

This is shown by computations
2 of the phase difference produced by

the shadow of the head. Second, if the curves passed through the

origin, computation shows that the effect would be fundamentally

caused by a difference in time of arrival.3 As will be abundantly

emphasized in Chapter X, the phase effect is very important

in all binaural acoustic finders, submarine and aerial. Observers

are being selected and trained for this work. It is found that train-

1
Figure 9-5 is taken from a later publication, Stewart, Psychological Monographs,

Vol. 31, No. i
; University of Iowa Studies in Psychology, No. VIII. H. M. Halverson,

Am. Journ. Psych., 38, 97 (1927), gives similar results.

2 See Stewart, Phys. Rev., 15, 432 (1920), Fig. 4, and accompanying discussion.
^

3 If <p
=

A'i0, then according to the assumed linear relation we have <f>
oc /0, wherein

/ here represents the frequency. Now a phase difference may always be expressed as

27T/- A/, where A/ represents a time interval. A difference of phase, <p, at the ears is thus

iirf- A/, where A/ is the difference in the time of arrival. Substituting v> / A/ in <f> /0,

we have A/ oc 0. That is, is independent of frequency and dependent only on the

difference in time of arrival of the sound at the ears. Klemm, Arch. f. d. ges. Psych.,

40, 117-146 (1920), emphasizes this difference in time of arrival in the case of impulsive

sounds. Such sounds have been made the basis of several psychological studies. Our

discussion here is too limited to include them.
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ing does lead to improvement. The ability rests not so much
on the sensitivity of the ears as upon the alertness of the individual.

There is at present a considerable interest in the psychological

aspects of both the binaural effects, intensity and phase. It must
not be inferred that through the studies of the intensity and the

phase effect the phenomenon of binaural localization is thoroughly
understood. On the contrary there has been made but a beginning
in understanding. That the phase effect cannot be interpreted in

terms of intensity is clearly indicated by the fact that in the regions
where the intensity effect lapses the phase effect is found to be clearly

in evidence, provided the frequency is sufficiently low. 1

There is one peculiarity of the phase effect which is of interest in

practical applications as well as in theory. For most people the

binaural phase effect ceases at approximately 1300 cycles. It is

found that some experimenters, after considerable experience, can

extend this range up to several thousand.2 The difference of phase
effect may be readily observed by using two tuning forks, one at

each ear, and listening for the rotation of the phantom sound about

the head in front. The forks should beat about once in five seconds

to make the effect easily noticeable. If the beats are too rapid, the

rotation of the phantom sound is lost and the phenomenon of

binaural beats appears. That is, beats similar to monaural beats

are heard but with the difference that the sound is not reduced to

zero, but only to a minimum. These beats have been studied 3 but

their cause is somewhat conjectural. So far as is at present known, a

slight deafness does not noticeably impair the usefulness of a

binaural phase effect observer.

1 See Stewart, Phys. Rev., 15, 432 (1920), and Psych. Mono., I.e.

2 In certain cases the limitation of the phase effect seems to be only that of audi-

bility. See Halvcrson, Am. Journ. of Psychology, 38, 97 (1927). At the higher

frequencies there seems to be greater fatigue.
3
Stewart, Phys. Rev., IX, 6(1917), pp. 502, 509, 514. C. E. Lane, Phys. Rev., 26,

401 (1925).



CHAPTER X

SUBAQUEOUS SOUND RANGING AND SIGNALLING

10-1. Sound Signalling in Water. 1

Advantage of the Acoustic

Method. The importance of an effective method of subaqueous

signalling can hardly be overestimated. Four general schemes

suggest themselves, viz., optical, magnetic, electrical and acoustic.

The effectiveness of each of these will now be considered. The

optical method may be dismissed with little discussion, for water is

highly opaque to infra-red and ultra-violet and not particularly

transparent even for visible light.
2 The magnetic method might

appear more possible were it not for the fact that instruments for the

detection of very small magnetic fields are not sufficiently rugged for

under water use and there is always the added complication of the

local magnetic field.

Since sea water is a good conductor of electricity, electro-

magnetic waves are rapidly absorbed in passing through it, thus

greatly diminishing the possibility of an electrical method of

signalling. There remains then the acoustic method, and it is

found that the sea is relatively a good medium for the propagation of

sound waves, a matter discussed in detail in the following section/

io-2. The Sea as an Acoustic Medium. The advantages and

disadvantages of the sea as an acoustic medium will now be dis-

cussed. First, with regard to shape it will be noted that the sound

waves are confined in a definitely bounded layer with varying cross

section, to be sure, but at no place much more than 5 miles thick.

This condition in one sense serves to confine the spreading of the

wave, though the advantage is somewhat nullified by the fact that

the bottom is an absorbing medium and that the surface reflects

with change of phase of pressure and displacement (see Sec. 1-17).

J This chapter will be devoted primarily to subaqueous sound signalling. The

problems peculiar to signalling in air are more appropriately treated in the chapter on

atmospheric acoustics. Some of the principles developed in the present chapter, such

as binaural localization, etc., will however have application to signalling in air as well

as in water.
2 Thus F. Collin (Le Genie Civil, 79, 375, 1921) quotes W. Bragg's estimate of the

visibility distance for visible light in the Mediterranean as of the order of 60 meters;

while in the English Channel the corresponding distance is only one-tenth as much.

231
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The latter action is equivalent to an image source of practically

equal intensity, but opposite in phase. The source and its image
will produce practically zero intensity just within the surface. The
closer the source to the surface the greater the region of interference.

This suggests at once the desirability of using sources at some
distance below the surface and if possible to have a source emitting

cylindrical or plane waves. The "beam" transmission has in fact

been partially realized by the use of high frequency sources, which

will be discussed later in this chapter.
Variations in the homogeneity of the sea water would seem to be

of obvious importance. Thus the salt content may change from

place to place, and the temperature and the density of the water

both change with the depth. This changes the velocity of sound,

given, as will be recalled, by

where K is the compressibility or reciprocal of the volume elasticity

(see (1-30), Sec. 1-13)). An increase in the salt content of 20%
brings about a decrease in K of only 5% and therefore an increase

in c of only about 2.5%. Such an increase in the salt content,

however, causes an increase in the density of about 15% and hence

a decrease in c about three times the increase due to the effect of K.

At moderate depths the effect of change of salt content on the ve-

locity is therefore rather small. The pressure increases with depth
in accordance with the law p =

pQ + phg where p is the pressure at

the surface, h the depth, g the acceleration of gravity, and p the

mean density of the water. It has been found l that the compressi-

bility K decreases with increasing pressure, about i% for 10

atmospheres increase. The increase in density helps to compensate
for this in the value c Vi/pAT. Finally the temperature decreases

slightly with increasing depth causing an increase in the compressi-

bility
2 of a magnitude of about 2% for a change in temperature of

5 C. in the neighborhood of o C. The change in velocity due to

temperature is thus very small, particularly when we note how

slight the changes in temperature are over a depth of a hundred

meters or so.

The net effect of the non-homogeneities in the sea water is thus

1 See Krummel, Handbuch der Ozeanographie, i, 237, 298, 1907.
2 See Bridgman, Proc. Amer. Acad., 48, 310, 1912.



SUBAQUEOUS SOUND SIGNALLING 233

seen to be rather small. As a matter of fact the consistency with

which it has been possible to secure measurements on the velocity

of sound in sea water is another evidence of the fairly good homo-

geneity of this medium. Measurements carried out on Nov. T, 1923

by E. A. Eckhardt 1 off Fort Wright, Long Island Sound, indicate

that the only short-period variable affecting the sound velocity is

the tidal current. For example, at 2 P.M. with current running he

obtained c = 1494.2 m/sec (with an error not greater than one part
in 25,000), while at 4 P.M. when the current was about zero, he got
c = 1492.3 m/sec. These represent means of a number of observa-

tions in which sound was transmitted over a distance of about

300,000 feet at a depth of 42 feet.

It may be worth mentioning (as indicated above) that in sound

signalling near the coast and particularly near river mouths the

variations in salt content and the presence of currents are bound to

be most noticeable. This is further discussed in the next section in

connection with the range.

10-3. The Range. Theoretical and Experimental Con^ider-

ations. In Section 3 -2 it was shown that the energy flow in a spherical

wave, if there is no other cause of dissipation than the geometrical

divergence, decreases inversely as the square of the distance from the

source. With cylindrical waves 2 the decrease varies as the inverse

first power of the distance. A complete treatment of the problem of

cylindrical waves is beyond the scope of this book. Nevertheless

the law of the decrease in intensity with the distance can be under-

stood by the following relatively simple considerations. We note

that the total energy flow per second is equal to the energy flow per
second per unit area (i.e., the intensity) times the area of the surface

through which the flow is taking place. For given energy output the

intensity thus varies inversely as the area. But in the case of

cylindrical waves the area through which the wave passes is simply
2?r/r where / is the height of the cylinder and r is the distance OP of

the surface in question from the axis of the cylindrical source (see

Fig. 10-1). The result we have obtained follows at once.

One would expect that both for spherical and cylindrical waves

the decrease in intensity would be due mainly to this geometrical

spreading. For the decrease due to pure viscosity should be very
small. This has already been noted in Sec. 3-3, where it was shown

1 E. A. Eckhardt, Phys. Rev., 24, 452, 1924.
2 See Lamb, Hydrodynamics, 1916, p. 520.
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that for a plane wave (and the result as far as absorption is concerned

will be the same for a spherical or cylindrical wave) the attenuation

coefficient, which is the reciprocal of the distance in which the

FIG. iQ'i.

displacement amplitude is reduced in the ratio ife, is given by

a =
3

where ju is the coefficient of viscosity of the medium. Now for

water at 15 C., M = .0114 in the usual c.g.s. units. Hence for a

wave of 1000 cycles we have

a = io-10

approximately. Thus such a wave would travel approximately

100,000 km before being damped in the ratio indicated. For lower

frequencies, the distance would be even greater, as the formula

indicates. It is clear that the effect of viscosity on the transmission

of low frequency waves in water is practically negligible.

It will be of value then to estimate the theoretical value of the

range to be expected on the assumption of inverse first or second

power falling off.

Let us suppose we have a source v/ith an output of 100 watts.

Then if the propagation is in a spherical wave the intensity at

distance r from the source will be given by

in watts per cm2
. At a distance of 1000 km this would become

practically 8 X icr16
watts/cm

2
. Hence assuming a receiving

instrument of this sensitivity, the figure of 1000 km would represent

the theoretical range.

Consider further the case of a cylindrical source having an out-

put of TOO watts for each 20 meters of its height. The intensity at
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a distance r from the source will be

(27r)2000r

Using the same value of a. = io~10
, it is seen that if io~15

watts/cm
2

represents the minimum detectable intensity, this limit will be

reached for r ~ 5 X io10 cm roughly or 500,000 km.

As a matter of fact the actual experimentally observed values of

the range fall far below either of the two theoretical values computed
above. Thus under the best conditions ranges have not been

reported greater than about 250 km. 1

It is clear that the falling off in intensity in sound waves in

water is not due to spherical or cylindrical divergence. On the

contrary all the evidence points to exponential damping or ab-

sorption. This, however, can not be due merely to viscosity.

Hence the reason for the shortness of the ranges commonly observed

must be due to non-homogeneities in the water. This view is con-

firmed by the observation that, other things being equal, the range
is invariably greater in winter than in summer, the ratio being

approximately three to one. This is exactly what would be

expected from the behavior of the temperature gradient. Thus in

the summer the surface water is warmer than the lower depths

causing a bending of the waves downward. In very deep water this

would clearly lower the range. In shallow water the same result

would occur since the sea bottom is a poor reflector and would

absorb a large amount of the incident sound. During the colder

months, on the other hand, the temperature gradient is much less

marked or may actually be reversed, leading to a longer range, since

the wave would be bent upward and the reflection from the water

surface is almost perfect.

The effect of variation in the salt content on the range is very

slight on the open sea but may prove very noticeable near the mouth
of a large river. Even more pronounced is the influence of eddies

and currents which can cut off completely sound signals directed

across them. Thus Barkhausen and Lichte (loc. cit.) report
instances in which ranges of but two or three kilometers were

attained using apparatus with which 50-100 kilometers had previ-

ously been easily obtained. They note that, in general, ranges are

1 See Aigner, Unterwasserschalltechnik, Berlin, 1922, p. 52. Also see Barkhausen

und Lichte, Ann. der Physik, 62, 485, 1920.
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less near the sea coast, as might be expected from the preceding
discussion.

The effect of change in density with depth and of compressibility
is noted only in deep sea signalling and is not very marked (see

Aigner, p. 50).

The fact that the range is controlled by exponential decrease in

intensity has the practical result, as pointed out by Barkhausen and

Lichte (loc. cit.), that the increase in range to be expected by
increasing the power supplied by the transmitter is negligible

compared with what could be obtained if the intensity fell off with

the inverse first or second power of the distance. This, of course,

applies to what may be called low-frequency signalling (i.e., up to

1000 cycles). High-frequency signalling will be discussed later.

10-4. Transmission from and to Water. Application of Stetho-

scope Principle. It has already been pointed out in Section 4-4

that in the ordinary passage of sound from water to air or vice

versa the amount transmitted is only about 0.12%, an almost

negligible quantity. It was pointed out in the same section,

however, that by employing a suitably constructed stethoscope with

a very thin air chamber the power transmission becomes

in which mi = Sz/Si, the ratio of the cross section of the stethoscope
tube to that of the air chamber, and rJ2 == ^2/^1 = ratio of specific

acoustic resistances of air and water. This quantity equals

3 X io~~4 . We thus get unit transmission for

itytfi
=

3 X io~4
.

Though this would be in practice a somewhat exaggerated case, the

principle is of obvious application.
In Section 4-6 was discussed the use of an intervening medium

between the water and the air chamber of the stethoscope, and it

was shown that if this medium has a specific acoustic resistance

which is a geometric mean between the values for air and water

respectively the transmission will be unity if the thickness of the

medium is one-quarter of the wave length (in this medium). It

was pointed out that this thickness condition imposes on the trans-

mission a selectivity which is very pronounced. This is probably an

important item in the explanation of the observed sensitivity
l of

1 See H. A. Wilson, Phys. Rev., 15, 178, 1920.
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sound receivers with thick rubber nipples (see Sec. 10-11 for further

details).

When sound travels from one medium to another through an

intervening medium (e.g., from water to air via rubber or iron) the

power transmission is independent of the properties of the inter-

vening medium provided the thickness of the medium is an integral

multiple of one-half wave length (in the medium itself). One might
therefore suppose that for a very thin intervening medium this

would still be true (for sin kl o under these circumstances as well).

But, as was emphasized in the concluding paragraph of Section 4-3,

a very thin sheet of a substance no longer acts as a true medium and

the analysis from which the above result was obtained no longer

applies. This matter is very important in connection with the

transmission of sound through the hull of a ship. The latter does

not act like a medium but vibrates as a whole. It is, however, a

well-known experimental fact that the vibration of the hull is of

the same order of magnitude as that of the water. In fact we can

see by very simple considerations that for the resonance frequency
of the hull the transmission from the water to the air inside takes

place more or less independently of the existence of the hull. Thus
if the vibrating area of the hull is S and the effective mass is M with a

stiffness coefficient F, and we denote its displacement by , then,

neglecting damping the expression for the pressure on the area S of

the hull is given by

pS = Ml + F. (10-2)

Now let the incident and reflected plane wave displacements in the

water at the hull be

and

while the transmitted wave displacement in the air on the other

side of the hull is

Now the boundary condition of pressure continuity demands that

the excess pressure in the incident and reflected waves plus the

pressure due to the vibration of the hull shall equal the pressure of

the transmitted wave in the air. But this condition is

M . F
2 , (10-3)
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where RI and RZ are the specific acoustic resistances of the water and

air respectively. The continuity of displacement demands

Ai - Bi = A*.

The solution of the above equations for A2 in terms of A \ would in

general require a knowledge of for the particular frequency being
transmitted. But for the transmission of the frequency for which

the hull (or the section of it being considered) is in resonance, we
have at once

Mi + F =
o, (10-4)

whence the boundary equations become:

Ri(4i + 5i) = #2^2,

A\ BI = A^
leading to

where ri2
= Rz/Ri, the relative specific acoustic resistance. The

power transmission

is thus the same as if there were no intervening hull.

A discussion of the vibration of plates will be given in Section

10-6. It will be of interest to note here that the lowest natural

frequency in air of a metal plate of thickness h and radius a in which

the velocity of sound is c is given by
1

he , N*>= 0.47-2, ( I07)

while the frequency of the same plate in water becomes

where

(10.9)

where p is the density of water and PI the density of the material

composing the plate. To take a special case, suppose the plate is

1 See Lamb, Proc. Roy. Soc., 98, 205, 1920.
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| inch thick and 7 inches in diameter and is made of iron, whence

c = 5.23 X io5
cm/sec and pi

=
7.8. The value of the frequency

in air is thus 1013 cycles while for water it is reduced to 550 cycles.

If the hull were one inch thick the diameter of an area which would

vibrate in water with the same natural frequency is given by solving
for a in terms of h in the expression for /, where /3 is replaced by its

value in terms of a and h. An equation of the fifth degree results.

For the case at hand its approximate solution yields a 28.5 cm for

the radius if h = 2.54 cm and the same under water frequency is

desired (namely 550 cycles). Naturally for larger thicknesses the

resonating area must be materially increased. Moreover the

resonance is fairly sharp.
1 Nevertheless for the case of the ship's

hull the general conclusion may be reached that it will not interfere

markedly with the transmission from water to air unless it is very
thick. Hence the use of the hull for the attachment of receiving

instruments or even as a source of sound is practical.

In a discussion of the transmission from water to air it is not

inappropriate to call attention to the use of "light bodies." It will

be recalled (see Sec. 4-1) that when sound passes from an acoustically

dense medium to an acoustically rare medium (e.g., water to air) the

transmitted amplitude is approximately twice the incident ampli-

tude, though of course very little energy is transmitted. It is

therefore clear that if a body much lighter than water were sub-

merged in water (by the use of suitable constraints) sound waves

incident from the water would cause the body to vibrate with a

larger vibration-amplitude than that of the incident wave provided
that the constraints employed to keep the body submerged do not

act to retard materially its motion. We can look at the matter

most simply in this way. The sound waves exert approximately the

same total force on the submerged body that they would on an equal
volume of water of the same shape assuming that the dimensions of

the body are much less than the wave length so that the volume of

water may be conceived approximately to move as a whole. Let

Mb be the mass of the body and Mw be the mass of the displaced
water. Let the extra mass of the body due to the fact that it is

vibrating in water (see Sec. 105 for a more detailed discussion of

this quantity) be Me . This will depend solely on the size and shape
of the body and the direction in which it vibrates with reference to

its shape (e.g., if an ellipsoid whether it vibrates in a direction paral-

1 See Lamb, loc. cit., p. 210.
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lei to its major axis or perpendicular thereto). Let the maximum
acceleration of displacement for the case where the water alone is

concerned (i.e., the displacement acceleration for the sound wave)
be awy while that for the light body is a\>. The fact, stated above, of

the approximate equality of the force then leads at once to the

equation
(Mb + Me)ab = (Mw + MJaw . (10-10)

But we have the relations:

aw =

where Ab and Aw are the displacement amplitudes of the body and

the incident wave respectively, and w is 2?r X frequency, as usual.

Hence for the amplitude ratio we have

Ab __ Mw + Me

which is, of course, greater than unity if Mb < Mw . As pointed out

above Me must be computed from the size and shape and orientation

of the body. For example if the body is ellipsoidal, Me is much

greater when the major axis is perpendicular to the direction of the

sound wave than when the major axis lies in the direction of the

wave. In some practical experiments conducted by Wood and

Young
1 this was shown to result in a directional effect such that the

ratio AblAw for the "head on" direction is greater than that for the

"broadside" direction in the ratio of approximately 5 to 2. This

seems about the maximum directional effect to be obtained with the

use of ellipsoidal bodies. Since the directional effect of single

microphones may be perhaps ten times as much, the practical value

of the use of the ellipsoid is very small. The 'Might body" prin-

ciple in general, however, has been of value in hydrophone research.

10-5. Sources of Sound. Radiation from a Sphere. Before

taking up practical sources of sound for subaqueous signalling it will

be desirable to discuss the influence of the medium on the source.

In water this effect may be considerable.

A rather simple illustration is provided by the radial vibration

of a sphere, emitting spherical waves into the surrounding medium.

1 A. B. Wood and F. B. Young, Proc. Roy. Soc., 100, 252, 1921-22.
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The velocity potential at distance r from a point source is (Sec. 3*2)

Now the corresponding quantity for the case of a spherical source of

radius a is

<;>= 4/r-e
ilut- r-a\ (10-12)

where r is now the distance from the center of the sphere. For

direct substitution shows that this satisfies the general wave equation

(1-16) and the boundary condition that for r a the particle

velocity will be the radial velocity of the spherical surface itself,

namely,
*

Sa
= fc.

Thus

\r
= -

(j/r + ikW/r-e*"'-*^, (10-13)

whence the boundary condition is satisfied if we choose A so that

* o#
2
(i
~

ika) f xA =--T
Substitution yields

The excess pressure at the surface of the sphere due to the radiation

is (see again Sec. 3-2)

The specific acoustic impedance at the surface of the sphere then

becomes by definition

p n _(ka + Q

which yields the specific acoustic resistance

Zsi = "^j (10-18)

and the specific acoustic reactance

which is in this case an inertance^ since it is positive. It must be
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emphasized that Z$ is a radiation impedance due entirely to the fact

that the sphere is vibrating in the medium. The extra force (or

force of reaction) on the sphere may then be written

Fa = ZSl -Sk + iZto'Sk* = Z8lSka +~~ {, (lO'2o)
CO

where S is the surface area of the sphere and we utilize the fact that

*
= /. The coefficient of tt in the above equation is the radia-

tion resistance coefficient while the coefficient of a is the radiation

inertia coefficient. Thus the equation of radial motion of the sphere
should now be written

M + . + (R + ZslS)ka +/{. = Q

if M, R and/ are the equivalent mechanical inertia, resistance and

stiffness coefficients of the sphere respectively, and is the driving
force. Written out in full the radiation inertia and resistance

coefficients are

and

We shall consider these quantities for the two special cases of low

and high frequencies respectively. In the former case (if the source

is reasonably small) k2
a* will be small compared with unity and we

have
*\7

^ = 4x0%, (10-24)

while

SZM =
41^2

. (I0 .

25)

The radiation inertia coefficient for low frequencies may thus be of

considerable magnitude, representing, as it does, the mass of a

volume of the medium three times the volume of the vibrating

sphere. For p < 3p ,
where p is the mean density of the sphere

(which of course may be a spherical shell) the radiation inertia will

actually be larger than the ordinary mass of the vibrator. On the

other hand, for low frequencies SZsi will be relatively small.
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For very high frequencies k2a2 will be large compared with unity
and the radiation inertia becomes

~2

which is negligible compared with the radiation inertia in the low

frequency case. The radiation resistance now is

oc, (10-27)

which is independent of frequency and relatively large. In fact we
note that the specific resistance in this case is simply

Zsi = P<A (10-28)

which is, however, the specific acoustic resistance for a plane wave.

The practical result, as will now be shown, is that the vibrating

sphere is more efficient as a generator of sound radiation at high

frequency than at low. At low frequencies the principal effect of

the medium is to increase the effective inertia of the sphere and

thereby increase its kinetic energy of vibration for a given fixed

value of a without increasing the energy dissipated. At high fre-

quencies, on the other hand, the effect is to increase the dissipation
term in the equation of motion and thus allow more radiation. In

fact we recall from Section 2-1 (eq. (2-10)) that the average rate

of dissipation of energy by any oscillator is given by

where Rf
is the total resistance coefficient. In the present case, the

corresponding quantity is

It is at once seen that this increases with the frequency if the

amplitude of remains fixed. Considering the flow of energy
in a plane wave (see Sec. 1-15) it will be noted that the flow of

energy is proportional to the square of the amplitude of the particle

velocity and is otherwise independent of the frequency. Thus the

condition here of the constant amplitude of fa shows the intrinsic

dependence of radiation upon frequency in the present case. We
have here one indication of the possible efficiency of high frequency

signalling in water.
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10-6. Sources of Sound. Vibrating Plate. The problem of the

vibration of a diaphragm or plate in water is most easily handled by

considering the plate replaced by a piston
1
all points of which have

the same displacement at any instant. Consider the piston as of

circular cross section with radius a, the center being at 0. In order

to find the influence of the radiation into

the surrounding medium on the vibration

of the plate, we must calculate the velocity

potential at any point P', distant r from

the center. From this the excess pressure
can be calculated and hence the total ra-

diation reaction force on the whole plate.

In the calculation of the velocity potential
we can consider each point of the plate as a

FIG. 102. point source of spherical waves emitted on

one side only. The contribution to the

velocity potential at P by a surface element dS at P r

distant r\

from P is given by

wherein A/r\ is the amplitude produced per unit area; whence the

total velocity potential at P is

(10-29)
1 f C^^

The constant A may be evaluated rather simply in this special case

by the condition that the displacement velocity of the plate (uniform
over the whole surface) is oe

iut
. Consider the little hemisphere

about P' of radius ro and take this as a hemispherical source of sound.

The velocity potential due to this source at a point distant z from

the point P
1
will then be

wherein the dS has been replaced by 2?rro
2
,
the area of the assumed

hemisphere. Now the resulting velocity at the surface of the

hemisphere will be

1
See, for example, Crandall, Vibrating Systems and Sound, 1926.
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By the above condition we have

lim^o L = 6***.

Therefore,

o
= lim^o

- 27rr 2
(

- + ik
)

= -
2?r/f, (10-31)

L \ ro / r j
whence

A = -
&/27T. (10-32)

It may be noted that Rayleigh
* has proved the general theorem

that the velocity potential due to any vibrating surface radiating
into the region on one side only at a point is given by

---Lf fj*^<, (10-33)^
27rJ J dn r

' v oo/

where r denotes the distance from the element dS to the point in

question and d<p/dn is the maximum displacement velocity normal

to the surface at dS. Our expression (10-29) is a special case of the

above in which d<p/dn
= ^e

l<at and is constant.

The actual calculation of the reaction force F from <pp involves

another surface integration so that the whole evaluation necessitates

a double surface integration. This will not be carried out here.

The calculation may be found in Rayleigh
2 and we shall confine

ourselves to quoting and discussing the result, which is

F = rfprt,". i
- + ,-..JCl(aA,), (to-34)

wherein Ji(zka) is the Bessel's function of the first order and argu-
ment zfca, while

2

By definition the specific acoustic impedance then is

(I0 .

35)

wherein the real part is Zsi, the specific acoustic resistance, while the

1

Rayleigh, Sound, Vol. II, 1916, 278.
2
Rayleigh, Sound, Vol. II, 1916, 302. See also Crandall, p. 143 ff, for a rather

simple derivation.
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imaginary part is Zs2 ,
the specific acoustic reactance or inertance.

We proceed to discuss these for high and low frequencies respectively.

Ji(ika) gradually decreases as ka increases. 1 Hence for high

frequencies, the resistance becomes approximately

the same as for a plane wave, a result already obtained in Sec. 10-5

for the case of a vibrating sphere.

For large values of ika> Rayleigh
2 shows that

T' / 7 > 2 / L \
Ki(ika) == (2ka).

7T

Hence for high frequencies we have

,. 2ojpo / x\
%S2 T'o (10-36)

7T#
2

corresponding to a radiation inertia (see Sec. 105 eq. (10-24))

^ = 2p^ == 2^ ^^^
This is, of course, small for a not too large. It is instructive to

compare this value with the corresponding one for the sphere,

namely 4wpQa/k
2
, the ratio of the former to the latter being ^TT.

It is the low frequency case which is of most interest to us at

this point. For small values of ka, there results

kW
ka

for

whence we get

(10-38)

and the radiation resistance coefficient is

SZKl = jTrpor*
2^4

. (10-39)

This should be compared with the corresponding quantity,

(10-25) for the sphere. The ratio of the former to the latter is |.

It is of interest to note that if we consider a vibrating hemisphere we

1
See, for example, Rayleigh, loc. cit.

2
Rayleigh, Sound, Vol. II, 1916, loc. cit.
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should have as radiation resistance coefficient 27rtf
4 2

p <:. The ratio

is then reduced to J and we can say that the radiation resistance of

the plate is equal to that of a vibrating hemisphere of the same area.

For ka small we see that Ki(lka) reduces to the first term in the

expansion above and hence the radiation inertia coefficient becomes

S'Zim 8 / .= -
Poa\ (10-40)

*j

This is thus 2/w times the mass of a sphere of the medium of the

same radius as the plate.

If the purely mechanical resistance coefficient or damping factor

is small compared with the radiation resistance coefficient, and ka is

small, the equation of motion of the plate with effective mechanical

mass m and stiffness coefficient f is

(m + | p,a*)l + ^irpockWk + /*
=

ft (10-41)
%j

where Q is the driving force. The average rate of radiation of

sound energy into the water is

|?max |

2
(io-4 ia)

and this increases with the frequency, bearing out the remarks made
at the close of the previous section.

It will be of interest to note the effect on the frequency of the

radiation inertia at low frequencies. The natural frequency is given

approximately by

(IO '

42)

We see that if the radiation inertia is equal to the effective me-

chanical mass, the frequency in water is only 1/^2 or -77 times the

frequency in air. In order that the frequency be not lowered by
more than 10% the radiation inertia coefficient must not be more

than 20% of the effective mechanical mass.

The effect of the radiation resistance on the frequency will be

measured by the ratio
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since the more exact expression for the natural frequency is (see

Sec. 2-2) _
*

f .

(IO '

43)

where M = m + 8/3 poa
3

. Let us take a special case in which

a = 10 cm, w = 1000. The extra mass is then 2667 gms and the

second term above becomes (using c = 14.5 X io4
cm/sec and po

= i gm/cm
3
),

I01Q

If m = io3
gm we get this to equal 2.2 X io2. But this will still be

only a small correction to the term

in this case.

To apply the preceding results to an actual vibrating diaphragm,
which, if it is clamped at the edges, does not vibrate as a piston,
we must ascertain the area and effective mass of the equivalent

piston. For a given driving force the rate of energy radiation (or

radiation damping) can then be calculated.1

The effect on the motion of a single circular diaphragm radiating
into a semi-infinite medium produced by other diaphragms in the

vicinity has been studied theoretically by Wolff and Malter 2 who
find that due to differences in phase the diaphragms react on each

other to increase the efficiency of radiation at low frequencies.

10-7. Practical Low Frequency Sources. Several types of in-

struments have been devised for generating sound under water.

Of the purely mechanical variety we may mention the submarine

siren built on the same principle as the ordinary air siren only with

jets of water passing through holes in a vibrating plate or series of

plates. The siren has proved to be inferior to the electromagnetic
transmitter and is now rarely used.

The electromagnetic sound generator may be one of two types,

viz., the electromagnet or telephone receiver type and the moving coil

or galvanometer type. In the first, alternating current is supplied

1 See Crandall, Vibrating Systems and Sound, p. 36.
2
Phys. Rev., 33, 1061, 1929.
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to the winding of a large electromagnet arranged so as to attract a

heavy diaphragm clamped along the periphery.
1 In the second

alternating current is supplied to a coil surrounded by a magnetic
field and directly connected to the diaphragm. A modification of

this, known as the Fessenden oscillator, is probably the most

efficient and generally satisfactory of all underwater low frequency
sound generators. It will be briefly described here. The principle

of the device can be understood by ref-

erence to the diagram (Fig. 10-3)
2 which

shows a cross section of the oscillator.

The outer part consists of a bipolar

magnet energized by direct current

through field coils shown in the figure

by double cross hatching. The pole

pieces are rigidly connected to the steel

diaphragm which is f
"

thick and shown

at the right of the figure. In the gap is

an iron core surrounded by a coil of wire

wound in one direction about one half of

the length of the core and in the reverse

direction about the other half. Alter-

nating current of the frequency desired

(generally 540 cycles) is supplied to this

coil. In the narrow space between the

coil and the magnetic pole pieces is a

copper cylinder fastened at each end to

discs which in turn are secured to a shaft

in the middle along the axis of the cylinder. The front disc (at the

right in the diagram) is rigidly attached to the diaphragm. The ac-

tion is as follows. Alternating current traversing the central coil sets

up eddy currents in the copper cylinder moving more or less in circles

about the cylinder in planes perpendicular to its length. These cur-

rents cut the lines of force of the magnet and are opposite in direction

over one half of the cylinder from what they are over the other. The

result is that during one alternation of the current the cylinder is

pushed forward while during the following alternation it is pushed

1 For a more complete description of such an instrument, see Drysdale et al.,

Mechanical Properties of Fluids, 1924, p. 304. See also Aigner, loc. cit., p. 179.

2 Taken with kind permission from a publication of the Submarine Signal Com-

pany of Boston, Mass., 1917.

FIG. 10-3. Diagrammatic
Cross-section of Oscillator
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backward, thus causing the diaphragm to vibrate with the same

frequency as the current. The device has the additional advantage
that the central coil winding is practically non-inductive whence a

high power-factor results with corresponding gain in efficiency. An
acoustic radiation of 500 watts is available with this instrument

under good working conditions at an efficiency of about 50%.
The following figure (Fig. 10-4)

1 indicates the resonance character-

istics of the device both in air and water.
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1200

10-8. High Frequency Sound Radiation. We now discuss the

radiation of sound into a medium by a diaphragm or plate vibrating
at high frequency, i.e., such that the wave length of the resulting

radiation is small compared with the dimensions of the plate. We
should expect from the discussion in Sections 1-2 and 1-3 (Chap. I)

that the smaller the wave length relative to the diameter, the more

nearly will the resulting sound be confined to a "beam" with little

sidewise spreading. This in addition to the greater radiation

efficiency of the plate at high frequencies already emphasized in

1 Taken with kind permission from F. Aigner, Unterwasserschalltechnik, Berlin,

Verlag von M. Krayn, 1922.
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Section 10-6 constitutes the principal advantage of the modern high-

frequency signalling or supersonics.
To consider this matter in a little greater detail, i.e., to discover

how the divergence of the "beam" depends on the relative magni-
tudes of plate and wave length, we take again the vibrating plate of

Section 10-6 now represented in perspective in Fig. 10*5. Let the

FIG. 10.5.

radius of the equivalent piston by which the plate has been replaced
be a. Let it be desired to find the velocity potential at point P on

the axis of the piston distant r from the center. This will be the sum
of contributions from all area elements of the disc, such as the

shaded ring. Thus we can apply the Rayleigh formula (eq. (10-33)

Sec. 10-6)

" =
-lrffto

CT JS - (K>44)

Since in the present case

(a constant over the whole surface of the disc by the piston as-

sumption), dS = iirxdx and 2 is the variable, we have

*iwtt-fffat /*<* ikz

~^J ~^~<Pp

Introducing x Vz2 r2
,
this becomes

'?'"J

(10-45)

. (10-46)
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Now let a = m\ where m is some number greater than unity. Now
the pressure at P is

e~ lkr
^. (10-47)

The power transmission per unit area at P, that is, the intensity is

(see Sec. 1-15) _

where the real part of pr is of course meant, and the bar indicates

average over time. We have for the real part of p r

pr PO^O[COS Vr2 + 7#
2X2 cos kr~\ cos cot

~~
po^oEsm ^Vr2 + w2X2 sin k?\\ sin cot.

Introducing the identities

cos #r2 + ?#
2X2 cos AT ==

- 2 sin - (; + Vr2 + ;;rX2
) sin - (^r

2 + ;
2X2 -

r)

and

sin Vr2 + 77/
2X2 sin kr

2 cos -
(r + Vr2 + 7#

2X2
) sin - (Vr2 + m2\2

7'),
2 2

squaring and averaging we find

o
2 sin2

-(Vr2 + w2X2 -
r). (10-48)

If r is large compared with m\ y we can approximate by putting

Then we have for /
T i o 7T7W X / v

/ = 2p ro2 sin2 , (10-49)

recalling that ^ = w/r = 27T/X. It is seen that for values of r

greater than ;#X but less than or of the same order of magnitude as

?
2
X, the intensity may be large. Strictly speaking in this range the

intensity runs through a series of maxima and minima, and does not

fall off continuously with increasing r. For values of r > m2\ on
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the other hand, the intensity on Hie axis falls off rapidly without

oscillatiojis. In fact we have then for large r

(10-50)

approximately, and the intensity thus falls off inversely as the

square of the distance l

showing that the radiation is now behaving
as a spherical wave. A rough picture of what takes place is afforded

by the sketch in Fig. 10-6. Here represents the center of the

FIG. 106.

piston surface viewed edgewise. The radiation is "oscillatory" in

nature out to PI where OPi = m2\. From that point on approxi-

mately there is conical divergence. We get a rough estimate of the

extent of the divergence from the conical angle 0, which from the

figure is seen to have the value

6 =
(10-51)

It thus appears, as we should expect from simple physical con-

siderations, that for a given wave length the divergence varies

inversely as the area of the piston surface.

As an illustration consider a plate for which a = 12 cm and

vibrating with a frequency of 50,000 cycles. Then X = 2.90 cm and
m =

12/2.9
=

4.14, whence the radiation remains within a conical

region of solid angle given roughly by */i8 steradians. The angle
1 The above treatment is essentially the same as that of Crandall, loc. cit., p.

'37
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8 in the plane figure (Fig. 10-7) then comes out 6=2 arc tan a/m*\
= 26 approximately. The experimental studies indicate that even

smaller angles are found in practice than the above theory predicts.

A more exact treatment of

the problem of supersonic ra-

diation involves the calcula-

tion of the intensity at distant

points off the axis of the os-

cillator.
1 The problem is

mathematically analogous to

the Fraunhofer diffraction of

light through a circular aper-
ture. This leads to the result

FIG. 10-7. that if we consider the first

sound diffraction ring on a

plane at considerable distance from the source the lateral spread-

ing of the radiation is confined to a plane angle of magnitude
d = 2 arc tan (.6i\/a). The analysis of the paper just mentioned

shows clearly that contrary to what might be supposed from an

uncritical interpretation of the approximate theory above there is

really no parallel beam of sound of cross sectional area equal to the

area of the oscillator at any distance from the source greater than its

diameter. Nevertheless most of the sound is confined to a relatively

narrow conical region extending outward with its apex at the

oscillator. In fact at any distance from the source greater than, say,

twice the diameter, the circle at the circumference of which the

intensity falls to one-tenth of the intensity on the axis in the same

plane will subtend at the center of the source a solid angle of magni-
tude 7r(.45X/#)

2
steradians, corresponding to a plane angular spread

of 5 = a arc tan (.45X70). For practical purposes this result is

probably as useful as that given by the Fraunhofer diffraction

formula. Thus for an oscillator with a = 10 cm emitting radiation

of frequency 50,000 cycles we get 6=15 approximately.

10-9. Supersonics. The Piezo-electric Oscillator. It will be of

value to review briefly at this place the disadvantages in low

frequency signalling which have stimulated research into the use of

supersonic transmission. In the first place, the fact that the

velocity of sound in water is nearly five times the velocity in air

necessitates the use of large scale apparatus. For a wave of fre-

1 See R. B. Lindsay, Phys. Rev., 32, 515, 1928.
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quency 1000 cycles the wave length in air is 33 cm while in water

it is 145 cm. But the best results (i.e., least scattering) are obtained

with the use of apparatus of dimensions large compared with the

wave length. The impracticability of the latter course is at once

rendered evident. In the second place, there exists always in

practice the difficulty of screening out the extraneous ship noises in

receiving sound signals. These extraneous noises are usually of

low frequency and according to report often interfere very materially
with the clear reception of signals. In the third place, as we have

had occasion to note above (Sec. 106), the radiation efficiency of

any sound producing device at low frequencies is low. In each

of these cases the increase in frequency helps to overcome the

disadvantage and in addition serves, as we have noted in the

preceding section, to concentrate the sound energy into a smaller

region.

During the latter years of the great War (1917) the French

physicist Langevin devised an acoustic oscillator with a frequency
as high as 50,000 cycles, which since its frequency is outside the

auditory range is generally referred to as a "supersonic" oscillator.

In constructing this instrument use was made of the piezo-electric

effect.

It had long been known that certain asymmetric crystals when

subjected to stress become electrically polarized.
1

Conversely if in

such a crystal polarization is produced by electrical means, it is

accompanied by dilatation or contraction. Examples of crystals

showing this effect are tourmaline, for which the discovery was first

made, quartz and Rochelle salt or sodium-potassium tartrate. The
latter shows the phenomenon in a most marked degree, but be-

cause of its more suitable mechanical qualities, quartz has been

so far most extensively used in practical applications. Consider a

section of a quartz crystal cut perpendicular to the optic axis (Fig.

io8). The resulting cross section is roughly hexagonal. The

optic axis may be thought of as extending out normal to the plane
of the section at 0. The lines AB^ CD, and EF are the so-called

electric axes, since along them the piezo-electric effect is most

marked. For practical use it is customary to cut out of the crystal

a slab of thickness d with sides parallel to the optic axis, as indicated

by the dotted lines in the figure. If this slab is then inserted be-

1
See, for example, Glazebrook, Dictionary of Applied Physics, Vol. II, p. 598.
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'tween two metal plates PP
f

(as in Fig. 10*9) (without necessarily

having the quartz touch the plates), the plates being connected to an

A.C. circuit, the oscillator thus formed will give rise to mechanical

vibrations of the quartz plate with the frequency of the driving
e.m.f. Conversely, if the quartz is made to vibrate through the

FIG. 10-9.

application of external mechanical pressure an alternating current

will be set up in the circuit. There will be resonance when the

frequency of the current is adjusted to equality with some one of the

natural frequencies of the quartz crystal. This resonance is found

to be extremely sharp. Experiments by Cady
1 with quartz

oscillators of natural frequency about 90,000 cycles indicate a

falling off of the current to one-half resonance value in an interval of

50 cycles either side of the resonance frequency, that is for a change
of only .05%. It is this property which has made the use of the

quartz oscillator so valuable in calibrating wave meters for radio

work. The influence of the sharpness of resonance on the use of the

quartz oscillator for signalling is noteworthy. For example, in the

report of Langevin's
2
experiments, for which unfortunately not all

the data are available in the literature, it is stated that using a piece
of quartz not cut for resonance an applied potential of 50,000 volts

was necessary to drive the oscillator so as to have it radiate I

watt/cm
2 at a frequency of 40,000 cycles. For quartz cut so as to be

1
Cady, Proc. Institute of Radio Eng., 10, 83, 1922.

2
See, for example, the article on Echo Sounding, Nature, 115, 689, 1925.
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in resonance at 40,000 cycles the applied potential for the above

power output is only 1250 volts.

As has been intimated the natural frequencies of a quartz
oscillator will depend on the way in which it is cut from the crystal.

A section cut as in the above discussion with faces parallel to the

optic axis will have three fundamental frequencies of which the

highest is in the direction of its thickness. In general the highest
fundamental frequency

l
is given by the empirical formula

(10-52)

in cycles per sec where d is the thickness of the specimen in cm.

For example, a frequency of 40,000 cycles will correspond to a

thickness of 7.2 cm. As a matter of fact the oscillators in use in

signalling are not single plates but mosaics of quartz imbedded in an

insulating medium such as resin. Moreover the lower fundamental

frequencies may be used so as to decrease the thickness of the pieces
which are employed.

A typical arrangement as used by Langevin
2

is indicated in the

accompanying figure (Fig. 10-10). In the sketch SS' represents an

outline of a portion of the ship skin. The oscillator is Q with the

, j

1 See A. Hund, Proc. Inst. of Radio Eng., 14, 447, 1926.
2 Taken from F. Collin, Le Gcnic Civil, 86, 38-41, 1925.
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quartz mosaic in the center and the two metal plates Pi and PI on

each side. P2 is connected to one side of an oscillating circuit

wherein the frequency of the oscillations is controlled by the

variable condenser C. The circuit of the oscillator is completed

through the water from B to PI. The source of high frequency
oscillations for driving the oscillator is not shown; it is the usual

arrangement employing the vacuum tube as generator. The part
denoted by A represents a receiver-amplifier unit which is cut out

while signals are being sent but which may be inserted for the

reception of signals when the quartz oscillator is used as receiver.

The frequency may be modulated by a beat method so as to render

the incoming signals audible or an oscillograph of high sensitivity

may be used to give a visible record which can be recorded on a

moving photographic film. Details with regard to the practical

application of these various schemes may be found in the article of

Collin above referred to.
1 Much work on the piezo-electric oscil-

lators is now being done in the United States but very little infor-

mation concerning progress is available in the general literature.2

Brief attention must be paid at this place to the recent interesting

experiments of Wood and Loomis 3 on high frequency sound waves

of large intensity. Their work appears to open up a large field for

future investigation of the physical, chemical and biological effects

of this type of radiation. They have used acoustic waves generated
in an oil bath by a piezo-electric quartz oscillator operating at

50,000 volts and at frequencies in the neighborhood of 300,000

cycles, the method of production being essentially the same as that

of Langevin above discussed. The intensity is so great as to

produce enormous radiation pressures, in one case amounting to

about 3000 dynes/cm
2

. They found that the waves can be trans-

mitted along fine tubes and rods which when squeezed by the

fingers will develop heat enough to produce painful effects. When
the vibrations are communicated to liquids more or less stable

emulsions have been formed, even of mercury in water. Numerous

experiments were tried in the production of standing waves in

plates and rods with such good success that wave length and

1 See also, F. Collin, Le Genie Civil, 86, 64, 1925.
2 For recent theoretical investigations see A. Meissner, Die Naturwissenschoften,

17, 25, 1929 (January, 1929). Also Phys. Zeits., 28, 621, 1927.
* R. W. Wood and A. L. Loomis, Phil. Mag., 4, 417, 1927. See also F. L. Hopwood,

Jour. Sci. Inst., VI, 34, 1929.
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velocity measurements became practicable. For details as to the

chemical and biological effects the original article should be con-

sulted.

It may also be noted that the use of high frequency waves for the

measurement of the velocity of sound in liquids has been successfully
made by Loomis and Hubbard. 1

They have devised for this pur-

pose a special type of sonic interferometer. A quartz oscillator

operating in the neighborhood of 500,000 cycles produces standing
waves in a column of liquid whose length can be very accurately
controlled by a fine micrometer screw displacing a piston at the other

end of the tube. As the length of the column is varied and the

tuning passes through resonance points, characteristic reactions are

produced in the oscillating circuit driving the quartz crystal, and

these are used to measure the half wave length of the stationary
waves in the liquid. This method has been developed to a very

high degree of precision and the attempt has been made to apply it

to the measurement of the velocity of sound in gases as well as

liquids.
2

In the same connection may be mentioned the result of experi-
ments by R. W. Boyle

3 that there appears to be no change in the

velocity of sound with the frequency in liquids over a range from

30,000 cycles to 600,000 cycles.

10-10. Acoustic Detectors. General Considerations. Among
low frequency detectors of sound signals in water we have to

distinguish between the purely acoustic type into which no electrical

connections enter and the acoustic-electric variety wherein sound

vibrations are converted into electrical oscillations and then back

into sound by means of the telephone receiver. In this section and
the one following we are concerned with the former type only.

Acoustic detectors may themselves be divided into two main

groups, viz., (i) pressure receivers and (2) displacement receivers.

Receivers of the first class are operated primarily by the excess

pressure produced by the sound in the medium in which the de-

tector is placed. The amplitude of the vibration (of a membrane,

say) is thus in this case a measure of the incident pressure. In the

1
Jl. Opt. Soc. Amer., 17, 295, 1928. Phil. Mag., 5, 1177, 1928. The work of G.

W. Pierce on the velocity of sound in gases at high frequencies (Am. Acad. Sci., 60,

271, 1925) has already been referred to in Section 1-13.
2
J. C. Hubbard, Phys. Rev., 35, 1442, 1930.

3
Nature, 120, 476, 1927.
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case of the second group the receiver measures directly the displace-

ment of the medium.

Illustrations may serve to make the distinction clearer. Thus a

diaphragm detector (e.g., a stethoscope) operates mainly on the

pressure principle, while the "light body" discussed in Section 104
is a good example of the displacement detector, for it vibrates with a

displacement amplitude of the same order of magnitude as that of

the sound wave which strikes it. It must be emphasized, of course,

that no real receiver functions exclusively according to either

principle. For the exclusively pressure type instrument would

necessarily be composed of a substance of infinite specific acoustic

resistance, i.e., pQc = oo, for only in this case would its displacement be

zero, while the exclusively displacement type would conversely be

made of a substance of zero specific acoustic resistance. Any
practical receiver therefore uses elements of both types. Never-

theless it will, in general, operate chiefly according to one and the

classification is therefore practical. It may be, moreover, of some

importance in practice.
1 For let us suppose that we are to detect

two sounds an octave apart in frequency with the same detector.

Assume the latter is primarily a pressure detector and that its

response is the same for both sounds. Since the dependence of

intensity on pressure assuming plane or spherical waves as we do

here is of the form

7 - p/por (10-53)

we must conclude that the intensity of both signals is the same.

Now the dependence of the intensity on the displacement amplitude
is of the form (see eq. (1-47) Sec. 1*15)

(10-54)

where A is the amplitude and o> = 2?r times the frequency, as usual.

Hence if the detector in question is primarily a displacement
detector (i.e., measures A) the same response to the two sounds

would not mean that they are of the same intensity, for the frequency
of one is twice the other and the corresponding intensity is four

times as great.

In general we may say that a receiver acts like a pressure detector

when its specific acoustic resistance is very high compared with

that of the medium in which it is placed, while it acts as a displace-

1 See Aigner, loc. cit., p. 202.
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ment receiver when its resistance is low compared with that of the

medium in which it is placed. For in the former case its displace-
ment due to the sound waves in the medium will be negligible and
the pressure exerted on it is definitely measurable as in the stationary

microphone, while in the latter case its displacement is greater than

that of the medium and the displacement is the quantity measured.

Since the specific acoustic resistance for spherical waves is a function

of the frequency (see Sec. 3-2) the behavior of a given receiver will

therefore in general depend on the frequency. But of course the

waves here considered are practically plane, or in other words, the

variation of specific acoustic resistance with frequency may be

neglected for large values of r.

lo-ii. Acoustic Detectors. The Broca Tube. The earliest type
of acoustic receiver was the so-called Broca tube, consisting (see Fig.
i oil) of a sphere or nipple C of rubber or sheet metal attached to

the end of a listening tube T. Such an in-

strument is primarily a pressure detector. It

is still in use for submarine signalling. It

embodies of course the stethoscope principle,

but there is one important point of difference,

namely that the rubber sphere or shell sep-

arating the water on the outside from the air

of the chamber does not vibrate as a true me-

dium but rather as a whole. We can not

then apply at once our stethoscope formulae,
but must discuss the vibrations of the shell.

The theory of this type of receiver has been

worked out in detail by H. A. Wilson.1 We
shall not consider this work in extenso, but

give the principal results. It is evident that,

irrespective of the shape of the receiver cham-

ber, the incidence of a sound wave on the rubber nipple will cause va-

riations in pressure and volume of the air in the chamber which

will then be communicated to the air in the ear tube.

The influence of the magnitude of the volume of the nipple can

be rather easily estimated. Thus let the equilibrium volume be V
and denote the change in volume corresponding to change in pressure

dp by by. Since the vibrations are adiabatic (see Sec. 1-13) we have

1 H. A. Wilson, Phys. Rev., 15, 178, 1920.

FIG. ion.
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IV
, ,

(10.55)

where />o is the equilibrium pressure (atmospheric) in the chamber

and 7 is, as usual, the ratio of the specific heat at constant pressure
to that at constant volume. The volume variation will be due to a

combination of two effects, namely the vibration of the nipple and

the flow of air out of the chamber into the tube. We write for the

change due to the former (S^)i and have

Betut
, (10-56)

where B = (d^Oi max- The displacement in the tube will be given

by = ^e l((at
-kx

\ (10-57)

where k = o)/e y as usual, and c is the velocity of sound in air. If

the cross sectional area of the tube is S and if we take x = o at the

junction of tube and chamber we have for the total volume variation

of the latter

which becomes
8P= (B + SA)e^

1
. (10-58)

Now the pressure variation at the junction must be the same for the

air in the chamber as for the air in the tube (continuity of pressure).
Hence we can write

^, C'o-59)

or from (10-55)

OX

Combining this with eq. (10-58) above, we have finally

Be* , , .

(10-60)

where tan 6 = kV^S. Now the intensity of the sound in the

tube is given by

which in the present case thus becomes
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This expression indicates clearly that to get the greatest intensity
for a given signal and for given S, the volume of the chamber V
should be made as small as possible. It might be thought that the

greatest effect would be obtained for ^0=0 exactly. But this

would mean an infinite condensation at the end of the tube, an

impossibility. Moreover, we are wholly neglecting viscosity which

plays a greater role as V$ gets smaller. For V fixed, a smaller S
contributes to larger intensity (stethoscope effect).

We need not discuss the problem in greater detail from a mathe-

matical point of view. The interested reader will find the theory

amply set forth in the article of Wilson just referred to. The

general assumptions made are as follows: the nipple is in the form

of a sphere and the forces that act on it are three in number, viz.,

(i) the force due to the incident sound wave from the water, (2) the

reaction force due to the radiation of sound from the sphere back

into the water, (3) the force due to the excess pressure in the air

tube. The air in the nipple is assumed to act like an incompressible
fluid. After writing down the equation of motion of the nipple, it

is possible to deduce an expression for the velocity potential at any

point in the air tube in terms of the incident sound pressure, and
hence to get the power transmission up the tube to the ear. It is

found that there is a resonance frequency for which the latter is a

maximum, and moreover that there is an optimum cross sectional

area of the air tube. As this area increases up to its optimum value

the response becomes greater and the resonance sharper. For

areas greater than the optimum the resonance becomes sharper but

the response falls off greatly. Other conclusions of the theory
follow in summarized form:

1. For a fixed value of the cross sectional area of the air tube the

power transmission falls off as the frequency increases.

2. The intensity, other things being equal, varies inversely
with the volume of the receiver chamber (see first part of this

section).

3. In general, small surface area of the receiver chamber, other

things remaining constant, leads to corresponding sharpness of

resonance.

Extensive experiments on sound receivers of the Broca tube type
have confirmed these theoretical conclusions qualitatively in every

respect, though it would be too much to expect quantitative agree-
ment in view of the necessary approximations involved.
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10-12. Microphones for Subaqueous Reception. Of acoustic-

electric sound receiving devices there are four principal types, viz.:

(i) microphone; (2) electromagnetic receiver (telephone type); (3)

electrodynamic receiver (of which the Fessenden oscillator is an

example); (4) condenser transmitter. All these may be used to

transform sound vibrations into electrical oscillations.
1 Of these the

microphone has so far proved most promising for subaqueous

reception. It is this instrument which will be discussed in this

section. It will be our endeavor to stress general principles in

microphone construction rather than to present detailed descrip-

tions of various types of microphones now available.

Microphones may be divided into two classes, corresponding
more or less accurately to the general subdivision of sound receivers,

into pressure and displacement detectors. The older type of

microphone in which sound pressure produces variation in the

resistance of an electrical circuit by varying the compression of an

aggregate of carbon granules, belongs to the first class. It has not

yet been designed for submarine signalling purposes. One of the

most stringent requirements of a microphone for subaqueous use is

that the sensitivity shall remain constant. This, however, is

impossible with the pressure type microphone as ordinarily con-

structed since the slightest change in the static pressure (brought
about, for example, by slight and unavoidable changes in the depth
or by currents) will alter the sensitivity and throw the instrument

out of adjustment. The newer type of microphone, the so-called

"button" variety (Shuttelmikrophon of the Germans) is primarily a

displacement detector. Its essential features are shown in the

following diagram (Fig. 10-12). The whole instrument is contained

in a sheathing or housing S, the front of which is in the form of

diaphragm A. Securely fastened to the inside of the diaphragm by
the coupling B is the microphone button. One electrode of the

button is attached to B through a second diaphragm C while between

the two electrodes are the carbon granules G. When a sound wave
is incident on the diaphragm A> it shakes the coupling B causing a

relative motion between D and E, for E and the housing remain

1 One may be confused by the not altogether logical use of "receiver" and "trans-

mitter." The terms have been used for many years in the telephone industry to refer

to the electrical performance rather than the acoustic. A telephone receiver receives

the current produced by the transmitter. The latter is, from the acoustical view, a

receiver. In this chapter we will use the term "receiver" when acoustic reception
occurs.
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FIG. 10-12.

practically stationary because of inertia. The vibration disturbs

the granules and so produces the desired alteration in resistance.

To understand the ac-

tion of such a microphone
it is very desirable to con-

sider for a moment some

ideas concerning the vibra-

tions of coupled systems.

In most problems in me-

chanical vibrations the

mass factor and the elastic-

ity or stiffness factor are

never completely differen-

tiated. For example, in the

vibration of a diaphragm
both the mass and the

stiffness are distributed

throughout the membrane.

This mixture of elements is

much more marked in the

usual mechanical than in the electrical oscillations where capacity
and inductance are fairly well separated in most oscillating circuits

(neglecting distributed capacity which is generally small compared
with the condenser capacity). So far in our study of vibrations in

this book we have encountered only one illustration of a definite

separation of the resonance elements of an acoustical vibrator.

This is the Helmholtz resonator. It will be recalled (see Sec. 2-3)

that the air in the opening moves as a whole providing practically all

the inertia of the system while the stiffness resides almost entirely
in the air of the chamber. But even here the separation is an

assumption that is closely approximate, rather than completely
real.

Nevertheless it is possible in an ideal way and probably will be of

value to consider practical mechanical-acoustical vibrating systems
as constructed from a certain simple system, namely two masses m\

and m* joined by a massless elastic connection, as in the accompany-
ing diagram (Fig. IO-I3).

1 For low frequency oscillations, for

example, this connector may be a very light spring, while for higher

frequencies it must be thought of as a very light but rigid rod

1 Hahnemann and Hecht, Phys. Zeits., 21, 187, 1920.
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possessing a large elasticity coefficient compared with its mass. If

the phase of the vibration is to be the same at all points of the rod,

its length should, of course, be chosen much less than X/4 where X is

the wave length in the rod of the longitudinal oscillations developed.
Hahnemann and Hecht have constructed such vibrators and have

FIG. 10-13.

found that the resulting vibrations are as pure and undamped as

those of a tuning fork. Such a system has been called in German a

"Tonpilz." We shall call it here simply a standard coupled

system. Often in practice one of the component masses is so large

compared with the other that it may be safely neglected, as for

example, when a spring vibrates with one end clamped in a vise.
1

We shall get a clearer picture of the behavior of the coupled

system considered if we solve its equations of motion, which

fortunately are very simple if the mass of the connector is neglected.

Wl 2

FIG. 10-14.

The displacement of mi from its equilibrium position 0\ will be

called #1. Similarly the displacement of m<t will be measured from

O2 and designated by #2. The positive direction is taken from left

to right. The restoring force on m\ may be written as f(x* Xi)

1 It may be objected that in no practical vibrating system is the differentiation of

the elements sufficiently exact to allow the rigorous replacement by a standard coupled

system as here defined. Moreover there exists also the difficulty that a coupled system

practically equivalent for one range of frequencies may not be so for another. The

authors recognize that the replacement is ideal but believe it will help in interpretation

if used cautiously.
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lile that on w2 is f(x\ #2), where/ is the stiffness of the con-

ctor. The equations of motion then are

mixi + f(*i
- #2 )

=
o,

i ft \ (IOO2)m 2x2 +/Cv2
-

#1)
= o.

v '

Iding the two we get

miXi + ;;; 2^2 = o. (10-63)

we denote the displacement-amplitudes of the two masses

ipectively by ai and a^ and assume that they perform simple
rmonic motions in the same phase we have then

o, (1064)

lence the amplitudes are inversely proportional to the masses and

positely directed. That the same is true of the individual kinetic

ergies is seen from the relations

mi J

ms if one of the masses is much smaller than the other practically
the kinetic energy of the system is concentrated in it. To damp

e motion, then, the damping force should be applied to the smaller

iss. For the same reason to avoid damping one of the masses

ould be made as large as possible so as to give rigidity to the

stem, for the heavier it is the less energy it will absorb from the

Dtion of the smaller mass. It should be emphasized once more
at we are here assuming that all parts of the connecting rod

3rate in the same phase, i.e., there is no wave motion or phase
Terence along the rod. If eq. (10-63) ^s integrated, assuming

nple harmonic motion and equality of phase (i.e., each displace-
mt varying as e

iut
), we have

this is substituted in (10*62), we obtain

MIXI = /(i+ Jtfi^
5 miuPxi, (io66)

icnce the frequency comes out to be

- = -J
27T 2?T \

+
. (I0.67)
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To get high frequencies (i.e., in the acoustic range) we must either

make/ very large or mi and m z very small. The former is the more

desirable as one often wishes to use heavy masses. Introducing

Young's modulus Y we have/ = YS/ly
where S is the area of cross

section of the rod and / is its length. The rod must then be as

short as possible with a high modulus. At the same time its mass

should be small. If we denote the latter by ma and suppose it small

compared with m\ and m^ it may be shown that the correct value

of the frequency is obtained by substituting into eq. (10-67)

[,
m a m>z 1

i H : ,

3;;*! mi + m% \ , v

r n (10-68)
. m* m\ I

mz
[

?na mi I
j ^ .

3w 2 mi + m 2 J

for mi and mz respectively. It is to be noted, of course, that even

though the mass of the connecting rod makes little change in the

frequency of the system, it does introduce a new natural mode of

vibration, viz., that of the rod itself. In general, however, it can be

arranged to have the fundamental frequency of this vibration very

high compared with that of the coupled system. Hence it will not

trouble the latter materially.

The inverse relationship of amplitude and mass should make
the standard coupled system of great value when a transfer of

amplitudes is desired, that is when one wishes to produce a large

vibration amplitude from a small one or conversely. In this case

the system may be said to act like a lever. As an example we may
consider the electromagnetically operated diaphragm as a source of

sound waves in water. This is a rather inefficient source as will be

seen from the following line of reasoning.
1 A sender placed about

one meter under the water surface with a radial intensity of more than

^ watt per cm2 at the source produces bubble disturbances which

break up the sound field. From the expression for the inten-

sity / = ^poCwP^j it is seen that this at once puts a limit to the

allowed amplitude for a given frequency. Thus for 1000 cycles we
find that the limiting value of A is io~3

cm, approximately. Now
suppose the diaphragm is vibrating in resonance with the applied
force. It then radiates maximum energy and we have simply

Force = R,
1 See F. Aigner, Unterwasserschalltechnik, pp. 129, 135, Berlin, 1922.
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where R is the damping factor and the displacement. If the

mechanical damping is small enough to be neglected in comparison
with the radiation damping, we then have (Sec. 106) for high

frequencies, R =
pocS, where S = ira

2
,
the effective area of the

diaphragm; while for low frequencies the corresponding quantity

(eq. 3-27) is R = pvukS^liir. Now the average rate of energy
radiation is

Under the conditions specified above it is found that max should not

exceed 2?r cm/sec. Let us suppose we wish the sender to radiate

I K.W. of power. Putting W equal to io 10
ergs/sec we find that

R =
5 X io8

c.g.s. units. Hence by the force equation, the maxi-

mum force must be loV gm wt or of the order of three tons weight.

With an electromagnetically operated diaphragm it is hopeless
to attain such a maximum force at the frequency indicated except
at a considerable loss in efficiency. It is here that an acoustic lever

should be of great value. For if the vibrating diaphragm is con-

nected to the smaller mass of a standard coupled system instead of

radiating directly into the water, it will cause this mass to vibrate

with a large amplitude. At the same time the vibrations are com-

municated to the water through the larger mass with larger radiating
surface as waves of smaller amplitude corresponding to the same

average energy dissipation but smaller intensity. The radiation is

therefore far more efficient than if it took place directly from the

diaphragm to the water. The same instrument could be used for

reception, transforming the incident sound waves with their small

amplitude into large amplitude vibrations of the diaphragm.
Possible difficulties in the way of the technical application of

these theoretical considerations may be: (i) the effect of the mass of

the vibrating diaphragm which will itself form a coupled system
with the smaller mass mentioned, and (2) the difficulty of rendering
the connection efficient.

Let us now discuss the carbon granule microphone from the

standpoint of the fundamental coupled system. Diagrammatically
we can represent the microphone as in the following sketch, Fig.

10*15. Thus the housing will represent the mass m\ while m^ is the

effective mass of the outer membrane, the stiffness connecting the

two being provided by the membrane itself. This constitutes one

coupling. Coupled to it is another system of which the one mass is
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made up of the mass m% plus the mass of the button diaphragm,
while the other mass is m3y that of the button housing. In this

second system the elasticity is divided, part of it residing in the

button diaphragm and the rest in the carbon granule filling. The

latter, of course, also provides damping for the system.

** n

FIG. 10-15.

It should be noted that in this case the coupling between mi and

m% is through a transverse vibration rather than the longitudinal

vibration of the standard coupling previously described. Never-

theless in its general lines the main argument is still applicable.

Now in practice it has been found l that the tuning of a micro-

phone for subaqueous work is very variable. For some time the

reason for this was not clear. But an analysis of the instrument into

its component parts as immediately above clarifies this difficulty.

In most of the microphones previously used the larger part of the

elasticity of the button resided in the granules. But this varies

considerably with variations in the pressure on the granules thus

accounting for the uncertain tuning. The solution obviously is to

insert most of the elasticity into the button diaphragm. This

might be accomplished by making the packing looser, though

unfortunately this procedure is often accompanied by an increase in

1 See Aigner, loc. cit., p. 208. It may be mentioned that most of the material in

this section is taken from Aigner's book or from his original source, namely Hahnemann
and Hecht.
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the noisiness of the microphone when in use. Compromise must be

reached through actual experiment to attain satisfactory adjustment.

Contrary to what might be supposed from their essential

simplicity of design, microphones have given much trouble in

practice. One difficulty has been that they do not attain their

maximum sensitivity at once after the closing of the circuit. The

period of growth may be as much as 30 seconds. The reason for

this is doubtless to be found in the fact that the air in the microphone
has to come to some kind of equilibrium during the process of

expansion of the air and the various component parts of the instru-

ment. This difficulty can be overcome only by the very careful

choice of material for the construction of the microphone, for

example, metals of small thermal expansion coefficient. Equali-
zation of pressure by communication of the microphone chamber
with the outside air also helps.

Other requisites for successful operation of microphones are:

water-tight housing, proper size and shape of carbon granules,

adjustment of the button support in order that it may vibrate with

but one degree of freedom, appropriate resistance of the microphone
circuit, which should be at least equal in magnitude to that of the

microphone itself.

One other important thing may be taken up at this place because

it enters so largely into the use of microphones for direction finding
based on the binaural effect (see Sec. 10-15). This is the necessity of

"matching" microphones for phase when several are to be used

together. It will be recalled that when an external periodic force

acts on a vibrating system, in order that the force shall contribute

energy to the system it is essential that there be a difference in

phase between the force and the resultant displacement (see Sec.

2-2). For frequency of the force = w/2?r, this phase angle a is

given by
//IIV / / / \

cot a = ~J~
, (10-69)

where ;, R and / are, as usual, the mass, resistance and stiffness

factors of the system. If two or more microphones are matched for

phase it means that the angle a. for all of them for a given frequency
is the same. The matching is usually done experimentally by

actuating mechanically each pair of microphones and allowing the

currents to oppose each other. If the resultant current is zero the

microphones are assumed to be matched. There is a difficulty that
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must be watched for in such a procedure. Examination of the for-

mula for cot a shows that for co far away from the resonance value

two microphones may be fairly well matched even though there are

slight differences in m
y
R and / for the two. These differences,

however, will have a very pronounced effect in the immediate

neighborhood of the resonance frequency for which a = TT/I, result-

ing in lack of phase agreement between the two instruments. This

may lead to serious error in the use of such instruments in lines of

receivers for direction finding, to be discussed in a later section, and

renders it essential that the matching be performed with very great

care throughout the resonance range.

10-13. The Tunable Diaphragm. During the late war, L. V.

King
l succeeded in developing a microphone receiver with a reso-

nance frequency alterable over a considerable range. It is clear

that this might possess considerable value in detecting from the

frequency of the sound picked up the nature of the source. For this

purpose a receiver with a fixed resonance frequency is practically
useless. Briefly put, King's method consists in altering the air

pressure in the microphone chamber, thus altering the tension in the

diaphragm. The accompanying sketch gives the principle in

diagrammatic form (Fig. 10-16). The apparatus differs little from

B A B

D

FIG. io- 1 6.

the conventional microphone save that the outer housing diaphragm
is made with most of the mass concentrated at the center (//) while

the annulus BB is rather thin. For example in a type case cited in

King's paper, the thickness at A is .07 cm while that for the annulus

is .03 cm. This is for an annulus of inner radius 1-75 cm and outer

1 L. V. King, Proc. Roy. Soc., 99, 163, 1921.
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radius 3.50 cm. D in the diagram denotes an air tube (through
which the electrical connections may also go) by means of which the

pressure in the chamber may be controlled. Increase of pressure
above the atmospheric will increase the tension in the annulus and

thus raise the frequency. Of course, a limit is provided by the

elastic limit of the diaphragm material (nickel-chrome steel in King's

experiments). The following graph (Fig. 10-17) indicates the order

CmofHg
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Frequency,

Curve I = Air

II = Water

FIG. 10-17.

of magnitude of the results obtained. The ordinates represent
excess or gauge pressure in cm of Hg while the abscissa measures

frequency. This shows the effect over a rather small range.

King says that a range from 450-1980 cycles is possible but gives no

definite data.

10-14. Principles Used in Localization. The Binaural Phase

Effect. It is now necessary to indicate briefly the principles

underlying the methods by which sound receivers may be used to

determine the direction from which sound approaches the listener.

The acoustic receiver (the Broca tube, as above discussed) has no

directional property whatever. This is not true of the microphone.
We have already noticed (Sec. 10*4) that a single microphone used

in water is many times more sensitive to a sound approaching from

directly ahead of the diaphragm than to the same sound approaching
at right angles. The single microphone can then serve as a direction
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finder but it is not a particularly accurate one for practical purposes
without the use of a baffle plate the effect of which has been noted in

Section i4.
1 The two most important principles now in use for

direction finding are the so-called binaural phase effect and the

maximum intensity effect. The first of these is the more important
for signalling purposes and its application will be discussed in this

section. The ability of an individual with two normally functioning
ears to center a sound (in the absence of too many reflecting and

scattering surfaces) by turning his head until the source of sound

seems to lie in the median plane of the ears is undoubtedly one of the

most remarkable of the many physiological capacities of man.
Realization of this fundamental property of the auditory system
doubtless came early but it was not until the middle of the last

century that a scientific study of the matter was begun. The work
has been somewhat complicated by the fact that there are really
two possible influences at work. In the first place difference in

intensity at the two ears undoubtedly has something to do with the

ability to detect sound direction. On the other hand the difference

in phase at the two ears of a sound from a given source also leads

to an apparent displacement of the source from the median plane.
One of the authors has made a careful study of both effects 2 with the

definite conclusion, based upon quantitative measurements, that

the binaural intensity effect is not competent to explain the ability

to locate sound under all conditions, while the phase effect is, at any
rate, up to frequencies of the order of 1 500 cycles. Hence the latter

effect is by far the more significant factor in direction finding.

Stewart gives as his most convincing reason for this conclusion the

fact that for most observers there are certain frequency ranges in

which wide variations of intensity at the two ears seem to produce no

displacement of the apparent source of sound (i.e., it stays fixed in

the median plane). In these same "lapse" regions the phase

effect, however, continues to be operative. The physiological and

psychological aspects of the binaural effects are dealt with in

Chapter Nine.

As far as the application of the binaural phase effect to the

detection of the direction of a sound signal is concerned, consider the

1 See also the experiments of Wood and Young, Proc. Roy. Soc., 100, 261, 1921-22.
2 G. W. Stewart, Physical Review, 9, 502, 1917. In the three successive articles

there presented there will also be found very complete references to the literature on the

binaural effects. In the present volume there is a careful survey of the subject in Sec.

9-12.
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accompanying figure (Fig. ioi8). Two acoustic receivers and

0' are placed at the ends of a rod of length /. The source of sound

is, of course, at a distance very large compared with the length /.

OE and O'E' are the ear tubes. The path difference between the

sound reaching and that

reaching O
r
is approximately / i

/ cos v = / sin 0. (1070)

The corresponding phase dif-

ference is k\l sin where k\ =

27r/Xi and \i is the wave length
of the sound in the water.

Rotation of the rod through
the angle in the appropriate
direction will reduce the phase
difference at the ears to zero

and the sound source will then

appear to lie in the median

plane represented in the figure by the dotted line perpendicular to

OO'. The angle then measures the direction of the source from

the observer.

In this connection it should be pointed out that if / is rather long
it may be that there will be some angle or angles 6 such that

/ sin =
Xi, (10-71)

where n is an integer. In this case there will be equality of phase at

the two receivers and the sound will appear to come from straight

ahead. To avoid this error it is well to make / rather short (and
indeed this course is dictated by practical convenience as well) and
of the order of the shortest wave length which the receiver is ex-

pected to pick up.
From the theory of H. A. Wilson 1

it would appear that the best

value of / is equal to one-half the wave length in water for the

resonance frequency of the receivers. The practical importance of

this may not be very great owing to the fact that the resonance

frequency is not particularly important.

10-15. Use of Compensation in Localization. In the modern

use of the binaural phase effect for submarine direction finding all

1 H. A. Wilson, loc. cit., p. 186.
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actual turning of the receiver system (e.g., the rod joining the two

receivers in Sec. 10-14) is given up and replaced by the more con-

venient equivalent plan of introducing compensation in the acoustic

line from the receivers to the ears. Thus to refer back to Fig. 1018

of the preceding section, instead of rotating the rod, one can shorten

the ear tube OE or lengthen the ear tube O'E' by an amount such

that the difference in length 72 l\ is equal to

j j kj sin 6

where k = 2?r/X and X is the wave length of the incident sound taken

in air instead of water. Thus the direction is immediately given by

where c and c\ denote the velocity of sound in air and water re-

spectively. In the so-called rectilinear oscillator the shortening or

lengthening is performed by
the use of a trombone adjust-
ment. The instrument may
be made to read or <p di-

rectly.

A more compact form of

compensator than the simple
rectilinear type has been de-

veloped in this country. It

is represented graphically in

the following diagram and

consists of two grooves in a

revolvable circular plate
fitted to a stationary plate

having in the grooves two

snugly fitting blocks. These

are represented in the figure by B and C. Tubes are inserted at I, 2,

3, and 4. A tube from one of the receivers goes to 2; the sound

then passes through the curved part R and out to the ear at 4.

The other sound receiver is connected with the ear via i and 3 and

the side L of the compensator. The rotating top can be calibrated

to read directly the angle 0.

We must now note certain factors of error in the use of the

FIG. 10-19.
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compensator. In the first place when the source of sound is nearly
dead ahead only a slight change in the air path is necessary to bring
the sound into the median plane and a small error in the compen-
sation makes a large error in the resulting angle. In the second

place there is generally present an ambiguity as to the actual

direction. For to consult the figure (Fig. 10-20) it is seen that

n

FIG. ID-10.

(from I) for a given setting the sound may be coming either in the

direction BA or CA* This ambiguity may be removed by noting
which way the apparent source moves with the alteration of the

compensator. When it is displaced from its position of equality of

phase the apparent source moves

opposite to the rotation of the com-

pensator if the actual source is in the

direction AB and in the direction of

the rotation of the compensator if in

the direction AC. The ambiguity

may also be overcome by rotating the

receiver bar through 90 as in II.

The two directions corresponding to

the same setting here are DA and BA.
The direction common to the two

observations, namely, BA^ is then the correct one. Obviously this

the procedure may be carried out without the necessity of rotating
bar by having three fixed receivers at the vertices of a triangle as in

the accompanying figure (Fig. iO'2i). Two observations taken in

FIG. 10-21.
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succession with two different pairs of receivers, as 00', O'O" or

0"0 will then suffice to fix the sound direction unambiguously.
Four receivers placed at the corners of a square are also often thus

employed, introducing the factor of safety that the failure of one of

the receivers will not prevent the use of the instrument.

10-16. Multiple Receiver Systems. Early in the study of

acoustic receivers it was recognized that several receivers used

together with the individual tubes leading into a large common tube

might gather more sound than one alone. The theoretical treat-

ment of such collections of receivers is extremely complicated. It

has been worked out in detail by H. A. Wilson.1 We shall not

discuss the theory here.

In most practical multiple receiver systems the units are arranged
in a line as in the figure (Fig. 10-22). If the tubes from each

FIG. 10-22.

receiver go to a common tube leading to the ear, then it is evident

that, for sound coming from directly ahead or directly behind, the

intensity at the ear will be a maximum. For sound coming from any
other direction the sound reaching each receiver will be out of phase
with that incident on any other and a certain amount of interference

will ensue, diminishing the intensity at the ear. Thus such a line of

receivers can be used to determine the direction of sound by what

may be called the maximum intensity method. That is, the line

of receivers may be rotated until the sound in the ear (the sound

from all the receivers will in this case go to both ears) is a maximum.
It is more common to dispense with the rotation and introduce

variable compensation into the tubes leading from the receivers.

Wilson shows that there is for the resonance frequency an optimum
length / for the distance between adjacent receivers. This is given

(1073)/J

where S is the area of cross section of the individual tubes leading
from the receiver units to the main ear tube. The resonance

frequency is coi/27r, while pi and po are the densities of water and air

1 H. A. Wilson, loc. cit.
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respectively and c the velocity of sound in air. It is then shown
that the area in the water across which there passes per second an

amount of sound energy equal to that which crosses the main tube

(assumed to be of cross section equal to the sum of the cross sec-

tional areas of the individual tubes) is given by

A = \i(n
-

i)7

where n is the number of units, i.e., (n i)/ equals the length of the

line, and \\ is the wave length of the sound in water. Of course, we
must be careful not to put too much emphasis on resonance con-

ditions, as these are not the important ones in practice.
A great variety of multiple acoustic receivers have been con-

structed. For a description of the characteristics and uses of these

reference should be made to articles by Harvey C. Hayes.
1 Most of

these have been superseded by lines of microphone receivers to be

discussed further on in this section. But one type, the so-called

multiple forward (MF) tube, is of sufficient acoustic interest to be

worth mentioning here. Two receivers (acoustic) are joined by a

tube (see the accompanying figure) which is tapped at a point C

A B

C .. =O

E B'

FIG. 10*23.

between them, and the sound therefrom led to the ears. Let us

suppose that sound is approaching this pair of receivers from the

direction of the arrow. The receiver A will then be first excited and
the resultant disturbance will travel down the tube to the outlet C.

At the same time the sound will travel through the water from A to

By excite 5, and the resulting disturbance will travel through the

tube from B to C. Now if the two disturbances reaching C from
either side are in the same phase, reinforcement will ensue and the

1 See in particular H. C. Hayes, Proc. Amer. Phil. Soc., 59, i> 1920.
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sound emerging from C will be of maximum intensity. Any
difference in phase will materially decrease the intensity. If we
wish maximum intensity to result for sound approaching in the

direction of the arrow we must insert the outlet C in such a way
as to provide for phase agreement. Let AC = x and AB = L The
condition for phase agreement then is

* = / l-x
\a Am Aa

where X and X ?tf refer to the wave lengths in air and water respect-

ively. From this we get

cl

(10-75)

where c = velocity of sound in air and c\ = velocity of sound in

water. Introducing the numerical values we have x = .61 5/, which

fixes the position of the outlet. This multiple receiver is thus a

maximum intensity direction finder, for when the intensity of the

sound at the ears is a maximum the sound source must lie in the

direction of AB and nearer A. As a matter of fact these receiver

pairs have been used in groups of four (eight receivers in all) as

indicated in the following diagram (Fig. 10-24).

*-To main line

FIG. 10-24.

To illustrate how such receiver units may be combined into a line

utilizing the binaural phase effect for direction finding, we may
consider for a moment the so-called MV tube (multiple variable)

(for a detailed account see Hayes, loc. cit.). This is now more or

less superseded in this country and has been replaced by a similar

instrument employing microphones instead of acoustic receivers.

It is of interest, however, as representing the most elaborate use of
the purely acoustic receiver. This instrument is made in two

parts; each consists of a line of twelve receiver units, and each unit in
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turn is of the type shown in Fig. 10*24. One line of twelve is

usually placed on the starboard side and another on the port side

of a vessel more or less parallel to the keel. As indicated in the

figure, each line of twelve is subdivided into two groups of six

each which connect to each ear separately, thus providing for the

employment of the binaural effect. The compensation device is

indicated schematically by the trombone-like attachments #, c
y d,

f> g> *> j and / (Fig. 10-25). The receivers 2, 5, 8, 11 are joined

FIG. 10-25.

to //, By C, D by tubes of invariable length. It has been pos-

sible to combine the whole compensation system into one circular

compensator with appropriate grooves. Naturally the compen-
sation introduced by each element must be made dependent on that

introduced by the others and is usually of a magnitude equivalent
to the phase difference corresponding to a certain small distance in

water, say from 5 to 10 cm. The binaural base-line, so to speak, is

provided by JKy the sound from / going to the left ear, and that

jfrom K to the right. In use it has been customary to get the
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bearing on the sound by employing first the starboard line alone and

then the port line alone. Finally the forward six receivers of each

line are used binaurally in what is called "cross" compensation to

check the previous determinations. This, of course, introduces the

need for a special type of compensator.
The electrical MV tube is similar to the acoustical, save in that

it uses microphones and necessarily employs electrical compensation.
It is of interest to note briefly the essential features of this instru-

ment, which is now in rather wide use. In place of the 12 acoustic

receiver units in the type above discussed there are 12 button

microphones constructed more or less on the lines laid down in

Section 10-12. In some types there are eighteen microphones in a

line instead of twelve. In either case half the microphones are

connected to one ear phone and the rest to the other. The con-

nection is made through transformers in the secondaries of which

are placed retardation units for the compensation. The retarda-

tion lines are of the type known as capacity coupling
l and are

indicated in the following diagram (Fig. 10.26). This is an electrical

FIG. 10-26.

filter with a change of phase (retardation) from section to section,

but with practically no attenuation. For a line of this kind Pierce

shows that the time lag introduced per section is VZ^A. This time

lag per section is usually arranged to be equal to the time required
for the sound to travel a certain small distance in water, say from

5 to 10 cm. For example, if it were 10 cm, the time T =
10/14.5

X io4 sec = 6.9 X icr6 sec. The compensation is accomplished

by the insertion or removal of individual sections from the ear phone
circuit. The above type of line shows only slight attenuation at

reasonably low frequencies (1000 cycles or less).

The advantages of the electrical MV type of installation over

the acoustical may be summarized as follows. First, the micro-

1 See G. W. Pierce, Electric Oscillations, p. 320.
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phone line may be strung along a cable which may be pulled in

with comparative ease, rendering it possible to repair defective units

without docking the vessel, which is necessary for the repair of the

more rigidly installed acoustic units. Second, the compensator

may be placed where it is most convenient, whereas the acoustic

compensator must be placed as near the receivers as possible. This

latter course is usually disadvantageous.

10-17. The Echo Method of Acoustic Depth Finding. All

modern acoustic methods for depth finding are based on the fact

that whenever a sound signal is emitted by a subaqueous oscillator

there is a reflected signal from the sea bottom. Use of this may be

made in two ways. In the first place for depths up to about 100

fathoms it is customary to use the regular sound receiving line to get
a bearing on the reflected sound (that originates, say, from the

propellers), and the determination of the depth is then a problem in

trigonometry. For depths over 100 fathoms this method is not

accurate and in such cases the time for definite impulse signals (such

as the intermittent sounds from a Fessenden oscillator) to travel to

the bottom and return is measured. From this and a knowledge of

the velocity of sound in sea water the depth may be ascertained.

The details of the measurement by the first method are indi-

cated l in the accompanying diagram (Fig. 10*27). The water line

FIG. 10-27.

is denoted by AB. The line from the propeller to the receiver

system is PR and is of length ih. If the bearing of the reflected

sound indicated by the receiver system is <py we then have

/ = h tan <p

1 See H. C. Hayes, Proc. Amer. Phil. Soc., 59, 317, 1920; 63, 134, 1924.
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and the depth is then given by

a + I = a + h tan <p. (10-76)

The receiver compensator can be calibrated to read this directly.

When the bottom is sloping the determination is more complicated.
Two separate receiver systems and two sound sources are necessary.
Thus in the diagram (Fig. 10-28) a sound source and receiver are

FIG. 10-28.

placed at both R and R' . A bearing is taken at R on the sound

from R'. Let the corresponding angle be 0. Similarly, a bearing is

taken at R' on the sound from R. Let the angle be <f>. Then from

simple trigonometry we have for the depth

,
,

. ih tan 6 tan <p , N
/ + a = a H - .

(10-77)tan 6 + tan <p
\ 1 1>

In both cases the question may be raised concerning the wave

reflected at the water surface. But we have already noted that for

sound reflected in the act of passing from water to air there is a

change of phase. Hence (as in Fig. 10-27) the reflected sound

traveling by the path PCR will interfere destructively with the

sound traveling by the direct path PR. Thus the bearing at R
always is on the sound reflected from the bottom and not the

surface.

In order to use the second method indicated in the first paragraph
of this section it is necessary to develop a very accurate and at the

same time rigidly constructed time measuring instrument. This has

been done by the U. S. Navy in the so-called sonic depth finder.
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The principle on which it operates is indicated in the following figure

(Fig. 10-29). On a uniformly rotating horizontal disc AE covered

with a good friction surface there bears a vertical wheel CD of

smaller dimensions. This rotates by the friction between its edge
and the surface of the horizontal disc. Its rotational velocity

depends, of course, directly on its distance from the center of AE^
and this distance can be varied by advancing or retarding the shaft

on which it rotates by means of a screw. At each revolution of this

wheel a sharp sound signal is sent out by a Fessenden oscillator.

D\

FIG. 10-29.

One ear phone of a head set is connected to this intermittent source

of sound while the other is connected to the sound receiver which

picks up the reflected signal from the bottom. It is evident that if

and only if the wheel CD revolves an integral number of times while

the sound from a given signal is traveling to the bottom and back,

the responses in both ears will be simultaneous. Suppose coinci-

dence has been brought about when the time between outgoing

signals is t\ RT/g, where R = radius of the small wheel, g = the

distance of the small wheel from the center of the horizontal wheel,

and T = period of revolution of the latter. If we represent the

depth by / we then have

where c\ is the velocity of sound in sea water, and p is some integer

usually unknown. In order to fix /, then, it is generally necessary
to decrease g until coincidence is again obtained. We then have, if

the new value of g is g
f

,

S'
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whence

and
i ciRT f N
^ =
^-7)' (-79)

From the equation it is clear that if accurate results are to be

obtained the period of rotation of the horizontal wheel must be

maintained very constant. In practice this wheel is run by a

rotary converter whose speed is controlled by an electrically driven

tuning fork. It is stated that variations in the voltage supply to the

converter not exceeding 10% are smoothed out, and constancy of

rotation obtained by fairly simple adjustment. It should also be

mentioned that it is necessary to have the intensity the same at the

two ears in order to make the comparison accurate.

It is worth noting here that Langevin has applied the use of the

high frequency sound to the problem of depth finding. The details

of the method do not differ much from the description of his general

high frequency apparatus given in Section 109. Reference should

be made to F. Collin, Le Genie Civil, 86, 38-41, 1925; also 86, 64,

1925.

We ought to note the more recent use of the depth finder to

determine the presence of ice bergs.

Incidentally we may note that another method of iceberg

detection may be developed from some recent observations of H. T.

Barnes 1 that loud deep characteristic sounds can be heard in the

underwater microphones up to three miles distant from a berg.

These noises are believed to be due to the cracking of the berg under

water. In the observations noted the succession of cracks occurred

at the rate of from n to 68 per minute.

X H. T. Barnes, Nature, 124, 337, 1929 (Aug. 31).



CHAPTER XI

ARCHITECTURAL ACOUSTICS

1 1 -i. Historical Introduction. Although the acoustics of closed

spaces has been of obvious importance ever since people began to

gather in auditoriums, it was curiously enough not until 1895 tnat

the maze of superstition concerning it began to be replaced by a

scientific study. Architectural acoustics may be said to have had

its beginning in the work of W. C. Sabine, who carried out in

Cambridge, Mass., the first important experiments on the acoustical

properties of a room. Up to that time the common method for

"improving" the acoustical properties of an auditorium in which the

hearing was pronounced bad had been to string wires. Sabine's

work soon led him to an appreciation of the real problem involved,

namely, the relation of reverberation to the amount of sound-

absorbing material present. This matter will be considered in the

following section.

1 1 -2. Reverberation. It has already been pointed out in Section

i '2 that by reverberation we mean the effect produced when a

multitude of echoes follow each other in rapid succession, and in

spite of the sound interference a greater sound intensity is built up
than would be the case if the same source were acting in the open
air and far from the presence of reflecting surfaces. If a continuous

source operates in a closed space, it is seen that only the absorption

by the surrounding surfaces prevents the intensity from becoming

indefinitely great. Hence the magnitude of the reverberation will

be controlled by the absorbing power of the surfaces. The shape of

the room is in general not important except in so far as it enters into

the volume. This does not mean that the presence of very deep
recesses in a room of given volume will not alter the reverberation

from the amount characteristic of a room of the same volume

without the recesses. It does mean that, leaving recesses out of

consideration, in general the curvature of the walls and their

relative orientation will have negligible influence on the reverber-

ation. Hence in the approximate theory to follow no attention is

paid to the relative magnitudes of room dimensions.
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We shall now derive the fundamental differential equation for

the growth of sound intensity in a room. The method we shall

use l seeks to determine the rate at which sound energy strikes

the walls of a room. Consider the figure (Fig. n-i) in which dS

0\d<z
* s an element f absorbing surface with

normal NO. At a distance r from dS
y

where r makes the angle 6 with the nor-

mal, there is an element of volume dV.

Let the average density of the sound

energy be uniform throughout the space
under consideration and be denoted by

j7IG jj.j E. The energy at any instant included

in dV is then Ed'V and that fraction of it

which will ultimately strike dS is included in the solid angle

dS cos 9

Since this fraction is du/^ir, it follows that the amount of energy in

dV which will strike dS is

EdVdS cos , ,

If the distance r is equal to c, the velocity of sound, sound energy
will reach dS within one second from all the volume elements within

the hemisphere of radius c with dS as center. Hence we are led to

take as our volume element the zone of a hemispherical shell

bounded by r and r + dr, 6 and + dO. That is,

dV = 2 TIT sin d-rdddr.

Therefore, substituting and integrating, we have, for the rate at

which sound energy falls on dS from all possible directions,

f f sin S cos BdOdr = \EcdS, (11-2)2 Jo Jo

or the rate at which sound energy falls on a unit area is

\Ec. (i 1-3)

1
See, for example, E. Buckingham, Theory and Interpretation of Experiments on

the Transmission of Sound through Partition Walls, Bur. of Standards Sci. Papers No.

506. See also E. A. Eckhardt, Jour. Frank. Inst., June 1923.
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Now let the absorption coefficient or power of the element dS be

denoted by a. Then the absorbing power of the whole surface

concerned (which is the fraction of the incident sound energy which

is not thrown back into the room) is

fa = I

Jo
adS = OL

$',

where a may be defined as the average absorbing power per unit

area of the exposed surface. The rate at which energy is absorbed

by the surfaces of the room is therefore

\EcaS.

Now the rate at which the sound energy is absorbed in the walls of

the room plus the rate at which it increases throughout the room
must equal the rate at which it is being produced. We have

therefore for our fundamental differential equation

/IF
r?+lEcaS = 4, (I I -5)

where V is the volume of the room and A is the rate of sound

production, assumed constant. The solution of this equation,

assuming production to start at / = o, is

(n.6)

whence after the steady state has been established we have for the

maximum density

If then the source is stopped, the decay will follow eq. (ii'5) with

A = o. That is,

E = E^r*****. (ii -8)

This equation was first derived by W. S. Franklin 1 in 1903. The
time it takes the sound energy density to decay to ifeth of its

maximum is thus Te
= ^VicdS. But this quantity is too small to

be of much practical use. Sabine decided to start with the minimum
audible energy density and to use io6 times this minimum as the

standard saturation energy density at which decay begins. He

1 W. S. Franklin, Phys. Rev , 16, 372, 1903.
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then defines as the reverberation time the time in which the decay
takes place from one value to the other. That is the time given by

IO-6 =
or

if all linear dimensions are in meters and we use c 344 meters/ sec.,

the velocity of sound at room temperature, i.e., 20 C. If every-

thing is expressed in terms of feet (i.e., V cu. feet, S square feet and c

in feet/sec.), we have the form

V V
T =

.049 ,
=

.049
- (n-io)

The reverberation time T can then be used as a measure of the

rate of intensity decay of sound in a room. It is well to point out

here the distinction between energy density and intensity. The
former is the amount of energy per unit volume, while the latter is

the rate of flow of energy per unit area. As has been shown in Sec-

tion 1*15, for a plane wave the latter equals the former multiplied by
the velocity of sound. Hence the ratio of two values of the energy

density is the same as that of the corresponding values of the in-

tensity. It is therefore customary in using the reverberation time

to refer to the decay of intensity instead of energy density.

We have derived the expression for the reverberation time by
mathematical analysis which neglects the dissipation of sound

energy by viscosity and heat conduction and which also disregards

entirely interference effects. The interesting fact is that the purely

experimental work of Sabine l

gave for the reverberation time

for most of the auditoriums which he tested. The agreement
between experimental and theoretical results shows that the funda-

mental assumptions on which the theory is based are reasonable.

In particular the assumption that we need not consider the shape of

the room in the calculations appears to be justified in auditoriums

generally. Of course relatively deep recesses do not occur in the

auditoriums tested.

1 W. C. Sabine, Collected Papers on Acoustics.
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It is therefore clear that to calculate the reverberation time we
need know only the volume of the room and its absorbing power,
and since the latter can be changed by the insertion or removal of

absorbing materials, the magnitude of T is subject to control. In

computing the absorbing power it is customary to group all areas

having the same absorption coefficient and multiply each one by its

appropriate coefficient, summing up finally for the whole. That is,

in practice
i=

a = Z <x*Si (11-12)
i=i

instead of the integral (11-4). This equation implies that the

particular arrangement of the absorbing surfaces has no effect on

the total absorbing power, an implication apparently justified by
the facts. The important matter of the measurement of the

absorbing power of rooms is treated in the next section.

Recent investigations by M. J. O. Strutt l have shown that the

law of Sabine expressed in eqs. (11-9) and (n-n) is of greater

generality than has been hitherto suspected. In particular the

usual demonstrations of the law (including the one given above in

this section) are incomplete since they neglect phase relations.

Strutt shows that Sabine's law is a general asymptotic property of

the forced oscillations of a continuous medium with arbitrarily

distributed absorption, as the ratio of the forced frequency to the

lowest characteristic frequency of the oscillating system tends to

infinity. It is assumed that the absorption is a bounded function

of the frequency (a condition generally attained in architectural

acoustics). Another interesting result obtained by Strutt is that,

when a system with absorption is excited by an oscillatory source of

high frequency, the rate of increase follows the same law as the rate

of decay in experiments like those of Sabine. He also concludes

that the increase of the oscillations of the system is complementary to

the decay, that is, the sum of the amplitudes taken at the same-

time /, reckoned in the one case from the moment the source stops

and in the other case from the moment the source starts^ is constant,

i.e., independent of the time /. Oscillograms of the increase and

decay of sound in a room, taken with great care to keep conditions

uniform, confirm this conclusion.

Strutt also emphasizes the important fact that the decay of

sound intensity in a room is not simply exponential in time but is

1 M. J. O. Strutt, Phil. Mag., 8, 236, 1929.



292 ACOUSTICS

oscillatory in nature. The experimental oscillograms actually

indicate the presence of floating interference patterns.
More recently Schuster and Waetzmann l and Eyring

2 have

pointed out that Sabine's formula (11-10) applies essentially to

"live" rooms, i.e., rooms with small absorption and large re-

verberation. Recent experiments show that this formula does not

work well for "dead" rooms, i.e., rooms where the average absorp-
tion coefficient a is greater than 0.5. Eyring has derived a new
formula by considering the reflection at the walls as due to a

sequence of image sources which all come into action the instant the

source starts. Sound energy reaches any given place from each

image in turn. Decay begins with the simultaneous stopping of

source and all the images, and the effect at each place dies out as

the sound from the various images dies off. If T is defined as the

reverberation time in the usual manner, on the above view the

effect of all the image sources is io6 times greater than the effect of

all those located beyond a distance cT, where c is the velocity of

sound. Eyring neglects interference effects. On his theory the

general decay equation takes the form

E = Emax<f* log -5><w
(i i .80)

The quantities have the same significance as in (n-8). It is noted

that, when a < < i, (11-80) reduces precisely to (n-8). The more

general formula (11-80) leads to the following expression for the

reverberation time:

agreeing with (11-10) if a < < i. However, it differs very

widely from the latter if a > .5. The factor 0.05 results from the

assumption of perfectly diffused sound energy. In cases where

there is an ordered distribution, this should be replaced by K and

given a value appropriate to the distribution. Experimental tests

indicate that (11-100) is a much better representation of the

reverberation time for "dead" rooms than Sabine's original formula

(ii'io). The practical importance of the new formula lies in the

fact that it indicates that much less absorbing material is needed
to make a room of specified (small) reverberation than would be

calculated by the old formula.

1 Schuster and Waetzmann, Ann. d. Phys., 5, i, 671, 1929.
2 Carl F. Eyring, Jour. Acous. Soc. Amer., i, 217, 1930.
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11-3. Methods of Absorption Measurement. The measurement
of the absorption of sound in a room is clearly one of the greatest

importance in the practical applications of architectural acoustics.

Reference to the reverberation theory of Section 1 1 -2 indicates that

several methods are available. In the first place consider eq.

(11-7). This allows us to express the total absorbing power of the

objects in a room in terms of the maximum steady state energy

density, that is, in the form

4^ / \
a =-

(11-13)
'-/-max

As a second possibility we may note the equation for the decay of

sound after the source has been stopped, i.e., eq. (n-8). This

suggests the use of Sabine's reverberation time eq. (11-9), and

indeed this method is the one which has been most generally

employed for the determination of a. The simplicity of the method

whereby an observer stops a tone of intensity about 10 times the

minimum audible intensity and then measures the duration of

audibility has doubtless appealed to investigators.

In the actual carrying out of the reverberation method by
Sabine and others 1 two sources were used, of emission rates A and

A^ respectively. If the durations of audibility with the two

sources are t\ and /2 respectively, and I\ and 72 are the steady state or

maximum intensities (these are respectively proportional to the

densities EI and E2, as we have indicated above), and if the mini-

mum audible intensity is denoted by /,,,, we have from (n-8)

whence
a =

log AilA^\V\c(h A), (11-14)

since in the steady state /i//2
= Ai\A^ by eq. (11-7). The only

measurements necessary besides T7
,
the volume of the room, are /2

and A, which can be determined by ear with the assistance of a

chronograph. The simplicity of the method is evident, but

Knudsen 2
points out some serious drawbacks. These are: (i) the

difficulty in ascertaining exactly the time when minimum audibility
is reached, due partly to the low sensibility of the ear to small

changes in intensity near the threshold of audibility and partly to

1 See W. C. Sabine, Collected Papers, Harvard University Press, 1922. The

present section is based in the main on the excellent summary by V. O. Knudsen,
Phil. Mag., Series 7, 5, 1240, 1928.

2 V. O. Knudsen, loc. cit., p. 1246.
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the actual fluctuation in intensity in the room produced by the

sound interference pattern. The second of these influences may be

minimized by the rotation of a large reflecting surface in the room.

(2) The necessity for absolute quiet, since the masking effect of a

residual noise on a tone near minimum audibility is very pronounced.

(3) The human factor introduces uncertainty into the results of this

method. It should be the effort of experiment to reduce this to a

minimum. (4) In addition to the slowness with which the measure-

ments must be carried out, must be cited the fact that the method
is very inaccurate when applied to rooms in which the reverberation

time is short, say of the order of 1-5 seconds or less.

The method of measuring a which is based on the eq. (11-13), i.e.,

that which Knudsen calls the intensity method, appears to be much
more direct. Suppose first the energy density Emax is measured by
means of a suitable detector, e.g., a telephone receiver in a room
with total absorbing power a. Then let there be added a known

amount of absorption, e.g., a number of windows opened, which

may be denoted by #'. Corresponding to this, a new maximum

steady state density Emii^ will result for the same sound production
A

y so that we have the two equations:

Then

a = _
*

This method has several advantages, namely, the facts that all the

measurements are instrumental and thus independent of the human

ear, that the percentage error in a is the same as the percentage
error in measuring max (i.e., Aa/a AEmax/ max from eq. (11*13)),

and that the disturbing effect of residual noise in a room can be

rendered negligible. Yet there are disadvantages, viz., reflection

at the walls produces an interference pattern (already mentioned

above in connection with the reverberation method), and the rate of

emission of sound is influenced by this pattern. This difficulty may
be overcome to a certain extent by "mixing" the sound in the room

by the motion of reflecting vanes or by the motion of a source which

generates sound of continuously changing frequency between certain

limits. The detecting devices can also be put in motion. In the

paper mentioned Knudsen has devised a simple and accurate plan
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for using this method. The results give a to within 2-3% of the

values obtained by the most careful application of the reverberation

method. It appears that the intensity method is susceptible of

great development. The plan, also mentioned by Knudsen, of

taking oscillograms of the decaying sound in a room, while inter-

esting, does not seem practical as yet.

11-4. Optimum Reverberation Time. Applications. It is at

once evident from the equations of sound growth and decay (n-6)
and (11-7) that the reverberation time is a very important factor in

the use of an auditorium for hearing speech or music. For if the

reverberation time is relatively great, any given sound like a spoken

syllable or musical note will take a relatively long time to build up
and decay and may seriously overlap any succeeding sound. Thus

speech may be rendered

inarticulate and music

may be hopelessly
blurred. On the other

hand a relatively short

reverberation time im-

plies a great gain in the

distinctness with which

the separate sounds are

heard. This matter is

very well illustrated by
the following graphs
taken from Eckhardt. 1

The first (Fig. 11-2)

shows the growth and

decay of sound intensity
in a room in which the

reverberation time is

long. The sounds in this

case are supposed to be

spoken syllables with an

average emission time of

0.2 second and an interval of .05 second separating syllables, in which

interval emission is supposed to cease. The intensity-time curves for

the individual syllables are drawn at the bottom of the graph. The
dotted curve is the integrated intensity or rather energy density to

1 E. A. Eckhardt, loc. cit., p. 805 ff.

.1 A .6 .8 10 II

f in seconds'

FlG. 1 1 -2.

/6 1.8 2Q II
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which it is proportional, and the upper full line curve shows the

intensity that would be produced by continuous emission at the

same rate. It is very evident that comfortable hearing in such a

room would be impossible, for the intensity builds up rapidly with

only a very small fluctuation to mark the individual syllables.

Only very slow speaking could be clearly understood in such a room.

Figure 1 1 -3 shows the effect of increasing the absorbing power
and hence cutting down the reverberation time. The intensity no

longer builds up and there is an adequate fluctuation to render

0.01

5 6 7 .6

t m seconds

FIG. 11-3.

distinct the individual syllables. An extreme case is presented in

Fig. 1 1 -4 in which there is practically no overlapping whatever of

the individual sounds. The usual observer would call such a room

"dead," probably because the maximum intensity attained is so

small and because most people are accustomed to a moderate

amount of reverberation.

The problem of the proper reverberation time for a room is

thus an extremely important one. It was first attacked by W. C.

Sabine,
1 who changed the absorbing powers of various rooms by the

introduction of varying amounts of absorbing material and then had

1 W. C. Sabine, Collected Papers on Acoustics, p. 71.
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musical experts listen to piano music in these rooms and pass

judgment on the effect. The experts agreed remarkably well among
themselves and the consensus of opinion was that I.T seconds is the

optimum reverberation time for piano rooms. It is obvious that

this method reduces the determination of the optimum time to a

matter of taste, within limits, of course, and even though the tastes

.002

2 4 6 .8 1.0

t- in Seconds

FIG. 11-4.

of musical experts may agree with regard to small piano rooms, it is

not inconceivable that they may differ much with regard to large

auditoriums for concert use. Moreover, it is probable that the

optimum time is something which for any one observer can be

altered within limits by experience. It is known, at any rate, that

band masters and orchestral leaders can gradually grow so ac-

customed to new conditions, which were at first very distasteful, as

actually to prefer ultimately the new to the old. With regard to

music, therefore, it seems unwise to set a definite optimum time of

reverberation. It is understood, of course, that the presence of the

audience in the auditorium adds to the absorbing power and

thereby renders the reverberation time a function of another

variable. Reference should here be made to the work of Watson,
1

who has sought to establish a more or less definite connection

between the "optimum" reverberation time of an auditorium and

its volume. Moreover, he has pointed out the advantage of having
the non-absorbent material in an auditorium placed in the neighbor-

hood of the source of the sound and the absorbent material con-

centrated near the listeners.

1 F. R. Watson, Jour, of Frank. Inst., July 1924. See also Science, 54, 209, 1926.
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With regard to speech the matter stands on a somewhat different

footing. For speech is either understandable or not and this will

obviously depend on the reverberation time in a way which can be

standardized. Knudsen l has performed some interesting experi-

ments based on the method of speech articulation tests. These

were introduced by telephone engineers in testing the speech
transmission efficiency of telephone equipment. The method is

somewhat similar to the old-fashioned "hearing" tests, in that

meaningless monosyllabic speech sounds are called out at a definite

rate in one part of a room and listeners stationed in various parts of

the room record what they hear. The percentage of speech sounds

heard correctly is called the percentage syllable articulation under

the conditions of the test. Similar tests are performed using vowel

and consonant articulation. According to Knudsen the average
auditor can not understand speech in an auditorium in which the

syllable articulation is less than 65%. From 65% to 85%, con-

ditions are acceptable to the attentive listener. Above 85% the

hearing is perfectly satisfactory.

The results of experiments performed in a small room (V = 4096
cu ft), with reverberation time controlled by the presence of ab-

sorbing material, are summarized in the following figure
2
(Fig. 11-5)

to ?.o 50 +4 so

FIG. 11-5.

in which the percentage articulation is plotted against reverberation

time. We clearly see that decreasing the reverberation increases the

1 V. O. Knudsen, Phys. Rev., 26, 133, 1925; also, The Architect and Engineer,

Sept. 1926, Jan, 1927.
2 Taken from V. O. Knudsen, I.e., as are also Figs. 11-6 and 117.
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articulation. The work was carried down to T = 0.6 second, but

there is reason to believe that further decrease in T would lead to

further increase in articulation. As a matter of fact experiments

performed in the open
with reverberation prac-

tically zero gave better

results than the small

room with T = 0.6 sec-

ond.

The next figure (Fig.

1 1 -6) shows the similar

results obtained in five

high school auditoriums

(without audience pres-

ent) with volumes of ap-

proximately 300,000 cu

ft. The indication is that the maximum reverberation time for audi-

toriums of this size for really good hearing conditions is about 2.75

seconds. Further experiments on this point are in progress.
Knudsen L has also made some interesting studies of the influence

of interfering noises on the percentage articulation. The results are

seen from the accompanying graph (Fig. 1 1 *y) in which the articu-

234 567
Reverberation (Seconds)

FIG. 1 1 -6.

100
[^--..fc

I I

8

8

rllable-

v
20 40 60 80

Loudness of Noise-S.U.

Average Per Cent of Hearing* 100

FIG. 11-7.

lation is plotted against the loudness in sensation units (S. U.).
2

When it is considered that the loudness of the ordinary conver-

1 V. O. Knudsen, loc. cit.

2 This unit of loudness is defined in Section 97.
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sational voice in an auditorium is about 47 S. U., it becomes clear

that disturbing noises can affect articulation to a serious extent. It

may be concluded that the speech must be of the order of 30-40 S. U.

louder than the noise if the latter is not to produce harmful inter-

ference. Experiments with pure tones show that the latter produce
an interfering effect which for tones with loudness less than the

loudness of the speech is almost independent of pitch, but which

varies inversely with pitch for tones louder than the speech. In

general, noise interferes more than an equally loud tone of any pitch.

11-5. Absorbing Materials. In the previous sections attention

has been called to the importance of the presence of sound-absorbing
material in a room. But we have so far not considered the nature

of this material. In the first place we must define a unit of ab-

sorption. An open window reflects negligible sound and hence is an

almost perfect absorber. We can therefore take one square foot of

open window space as the unit of sound absorption. In the metric

system one square meter may be used, but it is customary in this

country to use the English units in architectural acoustics. The

absorption coefficient of a given kind of material is then defined as

the number of absorption units per square foot, i.e., the ratio

between the absorbing power of a given area of the substance and

that of an equal area of open window. For example, if the ab-

sorption coefficient of a given kind of hair felt is 0.5, it means that a

given area of this hair felt absorbs half the sound that would be

absorbed by the same area of open window. The absorption
coefficients of substances can be measured by bringing into a room
known surface areas of the substance being tested and then de-

termining the change in absorbing power by one of the methods
described in Section 11-3. In this way tables of absorption coeffi-

cients have been drawn up, one of which will be found in Appendix
VII (based on the work of P. E. Sabine). It must be remarked,

however, that there is still considerable uncertainty in the precise

value to be attached to any one material. The exact state of the

absorbing surface, i.e., whether painted or unpainted, etc., must be

indicated. Moreover, with absorbing materials for which the

absorption depends primarily on the viscous resistance encountered

in small channels or interstices, we must expect that the absorption
will increase with the frequency of the sound, so that high notes will

suffer a relatively greater absorption than low notes. Even when
the state of the material and other conditions are given as precisely
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as possible, different observers obtain somewhat different coeffi-

cients. 1 Nevertheless the great utility of high absorbing materials

in the correction of auditoriums is proving a great stimulus to exact

research in this field.
2 It may also be noted that experiments by

P. E. Sabine have indicated that the absorbing power per unit area

varies with the actual area involved. Thus for areas from I square
meter to 10 square meters it decreases, but as the area increases the

absorbing power becomes fairly uniform.

In connection with the measurement of the absorption coeffi-

cients of absorbing materials we ought to recall the work of Wente
and Bedell already mentioned in Section 8-3 in the discussion of the

measurement of acoustic impedance.
3

They have also determined

the absorption coefficients of the materials put at the end of a tube.

We may remark, however, that these measurements are not made
under conditions actually realized in practice. For in rooms the

absorption of sound takes place with the angle of incidence assuming
random values, while in the above experiment the incidence is

always normal to the absorbing surface.

1 1 -6. Acoustic Adjustment of Rooms. It is hard to over-

emphasize the great importance of adequate attention to the

acoustic properties of a room or auditorium during the process of

designing it and before the actual construction. The main purpose
of the hall should be carefully considered and an approximate value

of the desired reverberation time agreed upon. The actual ab-

sorbing power for a hall of the desired size should then be calculated

from a knowledge of the area and absorption coefficients of the

various absorbing materials that will enter into it, viz., the walls,

ceiling, floor, seats and audience. The last will naturally be a

variable factor, but in general it is sufficient to allow for an ab-

sorption corresponding to from J to $ the maximum audience. 4

After all these factors have been accounted for, the residual neces-

sary absorption must be introduced in a manner best suited to the

architectural plan of the room. There are certain common ma-

terials for this purpose such as hair felt, plaster, cork board and

various fibers. The greatly increased interest in architectural

1 Private communication from Dr. P. E. Sabine.

2 A good summary is to be found in "The Absorption of Sound by Materials/' F.

R. Watson, Bulletin 172, Eng. Exp. Station, University of Illinois.

8 E. C. Wente and E. H. Bedell, Bell System Technical Journal, 8, I, 1928.
4 See F. R. Watson, Acoustics of Auditoriums, Jour. Frank. Inst., July, 1924, p. 73.
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acoustics has led to the development of many varieties of patented

sound-absorbing material, references to which may be found in

current literature (see Appendix VII). If the total absorbing

power of the necessary room equipment proves to be too great, it is

possible to reduce it by painting, varnishing or otherwise treating

some of the surfaces.

In the case of a hall already constructed, the acoustic properties
of which are found to need correction, the above sufficiently indicates

the general procedure. The employment of the services of an

experienced acoustical engineer is generally an economy.
1

1 1 7. Transmission through Walls and Floors. Sound Proofing.

The transmission of sound through the partitions of a building is

often a matter of great importance and has been the subject of

extensive investigation. It is not our purpose here to enter into

details 2 but rather to point out a few fundamental facts. When
sound waves strike a wall, a portion of the energy is reflected into

the room and we say that the rest is absorbed. Of the "absorbed"

energy, a part suffers viscous damping in the pores of the wall and is

dissipated into heat. If there are cracks or holes, a part of the

energy will travel through these as sound waves in air. Another

part of the energy will set up true waves in the wall which will be

transmitted through it as through any medium. But it must be

emphasized that, because the wall is in general very much more

dense than the air, the amount of sound energy conveyed through
the wall in this way is negligibly small. Lastly, the incident sound

waves on the wall will cause the wall to vibrate as a whole, i.e., as a

diaphragm, and so absorb energy from the incident sound and gener-
ate sound in the air on the other side. It is in this way that most of

the sound energy is transmitted from the air of one room to that of

the next. The actual determination of the amount transmitted in

a given case is a problem of some difficulty, for a discussion of which

reference may be made to Buckingham. But it seems clear that to

reduce the transmission in this way the walls should be made as

massive and rigid as possible and that the use of real sound-absorbing
material in the construction is of little value in comparison.

Sabine 3 has demonstrated that for masonry partitions ranging in

1 For further practical details the reader may consult F. R. Watson, Acoustics of

Buildings, 1923. Second Ed., 1930.
2 See the article of Buckingham above referred to for a good summary.
3 P. E. Sabine, Phys. Rev., 27, p. 116 (1927).
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weight from 10 to 45 pounds per square foot the reduction in sound

intensity, or the ratio of incident to transmitted intensity, is pro-

portional to the five-halves power of the weight in pounds per

square foot. Another interesting experiment by Sabine * showed

that the drumskin action of a wall is clearly in evidence in a double-

walled partition. Two walls, each of single gypsum tile, were

separated by an air space of two inches. The effect of bridging and

filling in the space with wood was tried. Then the ratio of in-

tensities on the two sides of the double-walled partition was meas-

ured. It was greatest for no filling at all, and the other conditions,

stated in order of decreasing reduction of intensity were: felt-filled,

slag-filled, bridged with wood, sawdust-filled. The reduction for the

empty space was four times that for the sawdust-filled space and

eighty times that for a single wall.

Investigations of essentially similar nature have been carried out

by Davis and Littler,
2 whose results parallel those of Sabine to a

large extent. In particular they emphasize the characteristic drum-

skin action. Of course it should be emphasized that the trans-

mission about which we are here speaking is from air to air through
the wall. The transmission of sound which originates in the wall or

floor is naturally a different matter. In this case there may be

considerable wave transmission through the partitions and the more

rigid the construction the greater the transmission. Hence it

arises that a room may be proof against sounds which arise in the air

of the adjoining room (such as conversation or music), while it is not

proof against sounds which arise by pounding on the floor or walls

or the throbbing of machinery fixed rigidly to the floor. These

facts must be considered in the practical application of sound

proofing.
3

Absorbing materials placed in wooden floors are somewhat

disappointing because the drumskin action occurs. Nevertheless

in home building if precautions are taken to prevent the top floor

from having solid contact with the underfloor, through nails or

1 P. E. Sabine, loc. cit.

2 Phil. Mag., 7, 1050, 1929.
3 Because of the nature of drumskin action, one would expect a distinct change in

the transmission with frequency of a stretched membrane of appreciable mass. The

higher the frequency, the less the relative response, except near resonance. Thus a

piece of stretched burlap heavily painted will transmit low frequencies as a drumskin,
but will more effectively reflect high frequencies. It is thus possible to make a studio

selectively reverberant.
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otherwise, and if the top flooring rests upon a half inch or more of

absorbent material, fairly good results are obtainable.

1 1 -8. Impulsive Sounds. So far in our study of architectural

acoustics we have been considering in general the effects of sustained

tones only. In particular, in the derivation of the reverberation

equation this was the type of sound assumed. Yet in the discussion

of the influence of reverberation on the articulation of speech (Sec.

11-4) it was seen that this influence varies with the nature of the

speech, that is, whether vowel, consonant or syllable. It was

found, in fact, that the percentage articulation for a given reverber-

ation time is least for syllabic sounds and greatest for vowel sounds

with the consonantal sounds occupying a median position. Now a

pure vowel sound has more of the characteristics of a sustained tone

than the syllabic sound, which is more nearly impulsive, in spite of

the fact that it contains a vowel sound. Hence the interesting

question arises whether we have a right to apply to impulsive sounds

without modification the theory that we have applied to sustained

tones. It would seem after a moment's consideration that we have

no right to do this. In fact, any one can carry out a simple experi-

ment, showing that the reverberation time of a room, as computed
from the decay of a hand clap (i.e., an impulsive sound), is con-

siderably greater than that computed by the Sabine or other methods

using sustained sounds. This is what we should expect when we
remember that in the usual determination of the reverberation

time the sound intensity is already at a maximum (steady state

condition) when the source is stopped and the decay sets in, while

in the case of the impulsive sound the intensity rises from zero to a

maximum and then decreases.

As a practical example of the importance of impulsive sounds we

may consider the reduction of office noises, i.e., typewriting and the

like. This problem has been investigated by P. E. Sabine,
1 who has

made the necessary modification in the original reverberation

theory. This is summarized in the following equation:

= ecatl*v
,

where E is the total sound energy produced by a single impact, V is

the volume of the room, a the total absorbing power of the room and
t the duration of audibility of the impulsive sound. In the above

equation, c (the velocity of sound) and V are supposed known and /

1 P. E. Sabine, The American Architect, May 24, June 7, June 21, 1922.
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can be measured in the usual way. Thus E is given in terms of a,

and if one can be measured the other is known. By using two

values of Ey say E\ and E^ in successive impacts and measuring the

corresponding time intervals t\ and /2> ^ is at once obtained. It is

assumed that the ratio Ei/Ez is the same as the ratio of the me-

chanical energies of impact. For the results of this method as

applied to the problem of office noises the reader is referred to

Sabine's articles.

11-9. Machinery Noises and Their Prevention. All machinery
motion involves the production of both sustained and impulsive
sounds. The elimination of such sound and noise is not particularly

important from the viewpoint of mechanical efficiency, for only a

relatively small amount of energy is involved. Yet the disturbing
effect on articulation (see Sec. 11-4) and the undesirable psycho-

logical effect which recent studies have brought to light render it

desirable to reduce machinery noise as much as possible. We wish

to consider in this section a few fundamental points bearing on this

problem.
The general principle involved in the reduction of machinery

noise is, of course, the prevention as far as possible of the trans-

mission of vibratory energy to surfaces sufficiently large to give off

appreciable acoustical energy to the air. Thus the problem is

mainly one of preventing the transmission of vibration from the

moving parts of the machine to the stationary foundation, for in

general the amount of noise transmitted directly to the air from the

moving parts is much less than that due to the vibration of the

supports and foundation. For slow motion machines, where the

frequency of the chief vibration is not audible, care should be

chiefly devoted to the precise fitting and adequate lubrication of all

gears and bearings. In the case of high speed motors and turbines

the matter of support is more important. In particular any support
which resonates with respect to any of the principal modes of

vibration of the machine should be carefully avoided, a matter of

great importance when rigid supports are necessary. The endeavor

should be made, and may often prove successful, to utilize the

supports to damp the vibrations taking place in them.

The support of intrinsically noisy machinery should be such as to

diminish the transmission of vibration to the floor or other con-

struction of large area. Obviously, this can be obtained by the

insertion of material of very different acoustic resistance. Thus a
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motor may have its bed supported on the floor by a series of springs.

Since the specific acoustic resistance is poc (Sec. 3*1), it is of im-

portance that the velocity c of a longitudinal wave in a spring is

very much less than that in a continuous solid. Indeed the specific

acoustic resistance of the spring for longitudinal vibrations is much

less and there is considerable reflection of the longitudinal vibrations

normal to the surface of contact of the motor base and the spring.

Obviously, a transverse vibration could communicate but little

energy also to the spring. So the effect of the springs is that of

causing a reflection of vibratory energy and of seriously decreasing

any vibratory motion in the floor. This provides a good illustration

of the application of the principle of securing a large change in

specific acoustic resistance. To summarize, it may be said that the

prevention of noise from machinery can wisely be secured by the

following steps: (i) prevention of the vibration at the source by
reduction of the cause, (2) diminution of the conduction of the vibra-

tion to surfaces of larger area by securing large changes in specific

acoustic resistance, and (3) the absorption of any persistent vibra-

tion by material in which damping is very marked.

The support of machinery on springs is sometimes discussed

under the term "vibration absorbers,"
'

though as a matter of fact

the interest should be in the transmission of vibratory energy. The

springs do not so much absorb energy as decrease the flow of

energy.
But there is a method for the reduction of vibrations in

machinery to which reference should be made. If a small vibratory

system, tuned to the operating frequency of the machine, is attached

to that machine in a suitable location, the forces set up will diminish

the original vibrations.2
Unfortunately this additional system is

called a "dynamic vibration absorber," though the term "absorp-

tion" in physics usually refers to energy. It is possible to add

damping to the small system and thereby make it serve over a

broader range of frequencies. Dynamic vibration "absorbers" may
be constructed for longitudinal, transverse or torsional vibrations.

The last is important in automobile engines.

1 For a discussion see
"
Vibratory Problems in Engineering," by Timoshenko, D.

Van Nostrand Company, 1928, p. 33. The authors think the explanation given by

Timoshenko is in error in comparing static vibratory conditions. It is the flow of

energy with which one should be concerned.

2 See Timoshenko, loc. cit., p. 101, or the contribution by Ormondroyd and

DenHartog, Trans. Amer. Soc. Mech. Eng., 1928.



CHAPTER XII

ATMOSPHERIC ACOUSTICS

I2-I. Resume of Principal Phenomena. The passage of sound

through the atmosphere has already been touched upon in con-

nection with some of the simple properties of sound waves treated

in Chapter I. It is the purpose of the present chapter to discuss in

more detailed fashion the problems that arise in this connection.

In this section l we shall undertake a brief survey of the leading

phenomena of atmospheric acoustics, reviewing in part material

already presented.
We have already deduced the general formula for the velocity of

a compressional wave in a fluid medium, viz., c = ^Idpjdp^ and have

noted (Sec. 1*6) that in the case of waves in air this reduces to the

form c vyp/p, where p is the atmospheric pressure, p the density
and 7 the ratio of the specific heat at constant pressure to that at

constant volume. From the general gas equation it follows that

the velocity of sound in air is independent of the pressure, but is

dependent on the temperature (eq. 1-3 of Sec. 1-6). We also note

that for sound waves in the open air (not confined to narrow tubes)

the velocity is independent of the frequency, except possibly at very

high frequencies (see note, Sec. 1-13), and the intensity of the sound*

Since the atmosphere always contains some vapor, the dependence
of c thereon is a matter of some interest. Both 7 and p/p are

affected by the pressure of the vapor. According to Humphreys
2

we may write for moist air

7 = 1.40 o.ie/p7 = 1.40 o.iep, 12-1

where p is the total atmospheric pressure and e is that portion of it

due to the water vapor. Moreover, for the density we have

B .778^; f ^

" - *
76o(l+ a/)'

(I2>2)

1 We shall here of necessity be under great obligation to W. J. Humphreys, Journal

of the Franklin Institute, May 1921. See also, by the same author,
"
Physics of the

Air," id edition, 1928.
2 Loc. cit., p. 587.
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where the significance of the various quantities is as follows: p is the

density of dry air at o C. and 760 mm of Hg; B is the reduced

total atmospheric pressure in mm of Hg; a and / are, respectively,
the coefficient of thermal expansion of the air per degree C. at o C.

and the temperature on the centigrade scale. The substitution of

the above quantities as given in (12-1) and (12-2) into the expression
for the velocity indicates that c in moist air is slightly greater than

that in dry air. For example, the velocity of sound in saturated air

at 20 C. and 760 mm of Hg is about 0.35% greater than that in

perfectly dry air at the same temperature and pressure. The
influence of fog, dust and smoke on the velocity of sound in the

atmosphere, though not definitely well known, is probably negligible

in most cases.

In Section 1-18 we discussed the normal reflection of sound in

fluid media and in Section 4-2 the general case of reflection at any

angle of incidence. In the present instance it is of interest to recall

(eq. (4-13)) that when a plane wave of sound is incident normally
from dry air on a fog bank or cloud in which the density is roughly
i% less than that of dry air, the ratio of the reflected intensity to the

incident intensity is but approximately 1/160,000. But here we
have neglected the possibility of total reflection, which can take

place when a plane wave of sound is incident at a sufficiently large

angle in passing from one medium to another in which the specific

acoustic resistance PQC is less. Thus to return to Section 4-2 and eq.

(4*13) we note that total reflection will result if cot 02/cot 0i is im-

aginary, so that 62 no longer exists. To see under what condition

this will take place, we may utilize the law of refraction to write

cot 2/cot * -

the subscripts i and 2 referring to the incident and refracting

medium, respectively, as usual. The ratio will then be imaginary,

provided sin 61 > c\\c^ Hence the critical angle is

6C = arc sin c\\ci

= arc sin Vpo2/Poi (12-4)

to a sufficiently good approximation in general. In the case of the

fog bank above mentioned, where po2/Poi
=

0.99, it develops that

C
= 84 approximately. Hence in spite of the fact that the
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reflection is small at angles near to normal incidence, a few successive

total reflections may largely change the direction of the sound. Of

course, the assumption of dry air in this example must be considera-

ably in error in the actual case.

Natural echoes have been mentioned in Section 1-2. Humphreys
*

classifies them under the following heads: (i) the discrete single

echo; (2) the discrete multiple echo (a number of successive re-

flections); (3) the overlapping multiple echo reverberation; (4) the

diffuse echo, due to the scattering of the sound by many small

objects; (5) the harmonic echo, clue to the greater scattering of an

overtone than of the fundamental (note that the intensity of the

scattered sound varies inversely as the fourth power of the wave

length); (6) the musical echo, due to reflection from, or scattering by
a series of objects spaced at uniformly increasing distances from the

source. In the last named case the echo will have a definite pitch

dependent on the spacing of the objects and the position of the

observer.
'

The two principal types of sound refraction by the atmosphere,

viz., convective (i.e., by the wind) and temperature, have already
been noted in Sections 1-7 and 1-8. There are some interesting

special cases of temperature refraction which may be elaborated on

here with profit. In the case of temperature inversion (i.e., the

temperature increasing upwards from the earth's surface), the

bending of the wave front may result in confining a large part of the

sound emitted by a source near the surface in a shallow cylindrical

layer of height determined by the maximum temperature attained.

This is accomplished by the ordinary reflection at the earth's surface

and refraction in the inversion layer. The intensity of the sound so

confined falls off roughly inversely as the distance from the source

and consequently the range is greatly increased. The situation is

illustrated in the following figure (taken from Humphreys, p. 597).

INVERSION LEVEL

FIG. 1 2- 1. Sound Confined to an Inversion Layer.

The same atmospheric conditions which produce optical mirages
are also effective in producing acoustical mirages. The following

1 Loc. cit., p. 594.



310 ACOUSTICS

figure
l

(Fig. 12-2) indicates the situation where the temperature

rapidly decreases upward for a short distance and shows how the

original wave front AEC becomes the distorted wave front A'E f

C''.

A'

2 -

FIG. 12-2. Inferior Acoustical Mirage.

At the position I (in the region in which the temperature change is

supposed to take place) little or no sound will be heard. At 2, two

identical sounds will be heard, one from the direction of the original

source and the other from a point below the latter. At 3, but one

sound is heard from the direction of the original source. From the

optical analogy this may be called the inferior acoustical mirage.
What may on similar grounds be called the superior acoustical

mirage is shown in the next figure (Fig. 12-3), wherein the tempera-

FIG. 12-3. Superior Acoustical Mirage.

ture is uniform throughout a shallow layer near the surface, then

increases with elevation for several meters, finally becoming uniform

at the higher temperature at a higher elevation. Then the wave

front ABCDE becomes the altered wave front A'B'C'D'E', and at 2

1 The figures of this section are all taken from Humphreys, loc. cit.
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three identical sounds may be heard, one in the direction of the

original source, one from a slightly higher direction and the third

from a still higher point.

The refraction of sound due to wind currents was treated in

Section 1-7. Here we need only recall the qualitative facts that,

when a sound originates near the surface of the earth and there is a

wind blowing with velocity increasing upwards, the wave fronts are

lifted to windward and forced down to leeward, much decreasing the

range in the former direction and increasing it in the latter. The

following figure (Fig. 12-4) is illustrative of this point. The ad-

s

FIG. 12-4. Distortion by Wind of Sound Fronts.

vantage of high elevations for sound sources for transmitting to

windward is patent. Often sound from the foot of a mountain will

be carried over the top to leeward by the action of the wind in

bending the wave fronts progressing forward, as is well indicated in

the following figure (Fig. 12-5). Oppositely directed winds in

FIG. 12-5. Sound Crossing a Mountain to Leeward.

adjacent layers (a not unusual state of affairs) act to bend the sound

wave fronts first up and then down, and hence may cause the zones

of silence so frequently observed with auditory areas on either side.

Among the sounds of meteorological origin which the reader will

find discussed in an interesting manner by Humphreys (loc. cit., p.

607 ff.), we may briefly note the following: creaking of snow, thunder,

brontides, howling of the wind, humming of wires, whispering of

trees, murmur of the forest, roar of the mountain, rustling of leaves,

rattle of rain, etc. Though perhaps not precisely in the same class,

the city dweller would doubtless like to add the hum of traffic, the
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far-off puffing of the locomotive, the increasingly prominent roar of

the airplane and the various noises which accompany the industry
of a busy city. It may not be inappropriate to mention here the

Doppler effect which must be noticed many times a day by all who
are passed in the street by automobiles. Thus the motor's hum is

always of higher pitch when approaching the observer than when

receding from him. This effect, characteristic of all periodic wave

motion, is described in detail in all texts on optics.
1

Of all sounds such as are noted above, perhaps the most inter-

esting are those dependent on aeolian tones. It has long been known
that when a current of air strikes a stretched wire normal to its

length, tones are produced, the pitch of which in a given case is

independent of the material, length and tension of the wire, but, as

was found by Strouhal,
2

is given approximately by the formula

v 0.185^,

where v is the velocity of relative motion of wire and air and d is the

diameter of the wire (all quantities in c.g.s. units). The production
of these sounds is undoubtedly due to the instability of the vortex

sheets which are formed by the obstruction the wire affords to the

rushing air. The eddies form a mass vibrating from one side of the

wire to the other. No completely satisfactory dynamical theory has

as yet been given.
3 When the pitch of the tone coincides with a free

oscillation frequency of the wire, these aeolian tones are rendered

much louder, for then the wire itself tends to vibrate in a direction

normal to the wind current. The humming of telephone and

telegraph wires, the whispering of trees and the general forest

murmurs are all illustrations of aeolian tones, sometimes attaining

large volume when the number of active objects is large.

12-2. General Theory of the Propagation of Sound through the

Atmosphere. The fundamental problem of atmospheric acoustics

may be considered to be the determination of the propagation of a

sound wave through a medium in which the velocity of the wave and
the velocity of the medium vary continuously from point to point.
The importance of the solution of this problem for sound ranging
and signalling in air is obvious. In this and the following section

1
See, for example, Houstoun, A Treatise on Light, London, 191 5, p. 275 ff. Or also

Humphreys, loc. cit., p. 588.
2 Ann. der Phys., 5, 216, 1878.
3 But see the work of v. Karrnan and Rubach, Phys. Zs., 13, 49, 1912.
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we shall follow in the main the analysis of Milne l in deriving the

general equations of propagation in a medium such as we have just
indicated. The calculation is based on the following generalization
of Huyghens' principle: each point of a wave front moves with a

velocity which is the vector sum of (i) the wave velocity of sound at

the point considered measured in the direction of the positively
drawn normal to the wave front at this point, and (2) the velocity of

the medium at this point. Using this principle, it is possible to

follow the motion of the wave front if we have given the two

velocities as functions of the coordinates. We shall then define a

"ray" of sound as a curve whose tangent at each point is in the

direction of the resultant velocity, taken at the moment when the

wave front passes through the point.
The treatment to be given here is confined to the case of steady

motion. Let the components of the medium velocity at the

point (x, y y z) be
,
v

y w y while the velocity of sound is c, a function of

x
y y y z. If we denote the direction cosines of the normal to the wave

front by /, m y n y the equations of the sound ray, expressed in terms

of the velocity components of the point (#, y, z) on the wave front,

will be
x = Ic + u,

y = me + v
y (12-6)

2 = nc + w.

It is necessary to add to these equations others expressing the

variation of /, m> n along the ray. Without leaving the wave front

let us vary the coordinates xy y y
z by dx> 8y y 8z. Then, corresponding

to eq. (12-6) we have the following:

d(x)
=

(fii)
=

BxjL(Ic
+ u) + 8yj^(lc

+ u) +
Bzj^(lc

+ u) (127)

with two additional similar equations in y and z. Since the varied

point lies on the same wave front,

fax + mdy + ndz =
o, (12-8)

whence on differentiation with respect to the time and substitution

from eq. (12-7) for (5#), etc., we have

i
&c

i i^u i
dv dw

1 E. A. Milne, Phil. Mag., 42, 96, 1921.



3H ACOUSTICS

where the summation sign indicates the sum of three terms with

factors dx 9 dy, dz, respectively. In obtaining the above, one needs

to recall the identities /
2 + m2 + nz = i and (d/dx)(P + m2 + ri*)

= o,

etc. Now since eq. (12-9) holds for all values of dx, dy y and dzy

satisfying (12-8), we must have

// /i i
&c t&u ,

dv
, dw\

// J+v-+ / ]T + w H- + w ^- )
\ dx dx dx dx /

dv

Writing
V c + lu + mv + nw,

where V is thus the component velocity of the point (x, y, z) along
the wave normal, and differentiating V with respect to x,y and z, but

considering /, m, n, as constants in so doing, so that, e.g.,

dc . jdu . dv
,

dw
5-+/v- + w^- + ^-,d^1 dx dx dx

eqs. (12-10) then become

, ,

by composition. Using these latter equations, it is seen that we can

replace (12*10) by the three equations

'--<-+++*.

The three eqs. (12-6) and the three eqs. (12- 12) are sufficient for a

complete determination of the ray. Of these the former set give

the direct propagation of the sound as affected by the bodily motion

of the medium, while the latter express the refraction of the sound

caused by the variation of V over the wave front.
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With a view to the applications of the next section let us confine

our attention to propagation through a stratified medium, i.e., one

such that the z axis can always be chosen so that w = o and #, v and

c are functions of z only. With this simplification the fundamental

eqs. (12-6) and (12-12) become, if we recall that dFjdx = d^fdy =
o,

x = k + u,

y = me + v, (12-13)

2 = nc
,

and

m = mn-, (12-14)

*-<*-.)

From the first two of eqs. (12*13) we see at once that

//'m constant, (I2 'i5)

indicating that the projections on the xy plane of the normals to the

wave fronts along any given ray have the same direction. In

particular it is seen that the normals to the successive wave fronts

along any ray will remain parallel to a fixed plane through the z

axis, i.e., a plane which is perpendicular to the layers of stratification.

Considering now a particular ray, let us adjust the x and y axes so

that the projections of the normals on the xy plane are parallel to the

x axis. This fixes m =
o, and hence, since df/dz reduces to

dc/dz + I(du/dz), we have

z = nc.

so that

$L = L(<*L t^a\
dz c \ dz

"*"
dz )

'

or, proceeding now to ordinary differentials,
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The integral of the above differential equation is

c\l co//o
= UQ u y

where the zero subscripts refer to initial or boundary values. If we

set / = cos 0, /o
= cos

, the above equation becomes

c sec 8 CQ sec = #o u. (12-17)

Equation (12-17) represents the general law of refraction of sound in

a stratified medium when both c and u vary. Incidentally we may
note (recalling that here 6 is the angle which the normal to the wave

front makes with the x axis) that eq. (12-17) reduces to the form

sec 6 - sec = " "~

", (12-18)

when c = r , and the refraction is convective only. This is precisely
the special formula (1-5) deduced directly in Section 1-7 (note that

in (1-5) denotes the angle complementary to the angle of the

formula above). On the other hand, if UQ = u> i.e., there is no

motion of the medium, we have

sin (V/2 0) c , ^

sin Or/2 -0 )

= ^ (I2>I 9>

the ordinary law of Snell (see Sec. 1-8). In the next section appli-
cation is made of the equations here developed to special problems
of sound ranging in air.

12-3. Application to Sound Ranging and Signalling in Air.

The problem of sound ranging in air is the detection by an observer

on the ground of the true direction of the sound from an unseen

aerial source such as an airplane. (For the detection of cannon

location, see particularly the following section.) The procedure

will, of course, involve a knowledge of the corrections which must
be applied to the experimentally determined direction in taking
account of the transmission of the sound through the atmosphere
considered as being approximately a stratified medium. It is

assumed that the instrument used measures the direction of the

normal to the incident wave front. In this section we again follow

Milne. 1

1 Loc. cit., p. 101 ff.
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In Fig. I2-6 1 the observer's position is taken to be the origin of

coordinates, while S with the coordinates X8,y8 ,
z8 is the source of the

sound. The observed direction of the source, i.e., the normal to the

incident wave front at O, is OS'. Let the vertical plane through OS'

be the xz plane, and let the

projections of S on the xy
and xz planes be, respec-

tively, N and Si. The ob-

served azimuth is thus

made equal to zero, while

the corrected azimuth is

the angle NON'= dp. The
observed elevation is the

angle SrON'= E> say, while

the correction to the eleva-

tion is the angle S'OSi= bE.

Let u(z) and v(z) be the

x and y components of the

wind velocity at height 2, pIG I2.^

while c(z) is the velocity of

sound. By we shall denote the angle which the normal at any

point makes with the horizontal, measured positively downwards.

Now the normal at O has been taken in the xz plane. Hence by
eq. (12-15) and the accompanying discussion the normal will every-
where be parallel to this plane. We can therefore write

/ = cos 6, m =
o, n sin 6.

The equations of the ray connecting S and O are then (eq. (12-6))

x = c(z) cos 6 -f #(z),

y = 0(z), (12-20)

z = c(z) sin 6,

while the refraction eq. (12-17) becomes

c(z) sec 6 CQ sec = #o u(z). (12*21)

From the first and third equations in (12-20) and from (12-21) it is

evident that the projection of the ray on the zx plane is independent
of v(z) (the so-called "cross wind"). Hence dE is independent of

v(z), and in calculating the elevation correction we can take Si as the

1 Taken from Milne, with slight modification. Figs. 12-7 and 12-8 are from the

same source.
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source. From the second and third equations in (12-20) we have

dy v(z)
-j-
= T-T esc 0,

dz c(z)

from which it follows that

f'*

u(z}

> '

Hence

tan d<p
= y8/(za cot (.E + 5))

tan (E +- 8E) CZa
v(z) n , , x= 1

I
-~ esc Qdz. (12-22)

'* /o ^ '

If we knew v(z), u(z) and c(z), we could compute from (12-21) and

hence evaluate the integral in (12-22). However, it is more con-

venient at this point to introduce approximations. The velocities u

and v are always much smaller than c. Hence, to a rather good

approximation we may set = 0o = E + dE in (12-22), i.e.,

consider as a constant under the integral sign and equal to the

actual elevation. Then

i v\ v
tan b(p (

-
J
sec = sec , ( l ^'^3)

\ c / Co

where v is the average v(z) from to zs , and we have neglected the

change in c as compared with that in v. The azimuth correction is

then given to a first approximation by (12-23).

To get the elevation correction we proceed as follows. From
the first and third of eqs. (12-20) we have

dx _ u(z)
-y = COt }-~ CSC 0,dz c(z)

*

which yields

COt (E + dE) = Xafza
= -

| |

COt ^~. CSC dz.
* Jo L c \ ) J

If we subtract cos 0o from both sides and simplify, we get

sin dE i f
*

i f . ,_ .
N , u(z) . - 1 , , N

. /zr . sr>. = I -r--^ sm (0 )+ -7- sm dz. (12-24)sm (E + dE) za J sin L
v '

c(z) J
*'
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From the general refraction law (12-21) it develops that

sin (9
_

o)
= cos e cos 0c, cos 1(9 g ) r u^jf. c^c 1

.

' sm |(0 + 0o) L *o fo J

Hence the integral in (12*24) can be divided into three parts, viz.:

sin dE _ i_
/** cos 0cos cos j(0

-
) / u(z) y/ \ ,

sin (E + BE) za JQ
sin 6 sin \(6 + ) \ c /

+ L T8^) .
sin

-Jo rW sisn ^

cos 0o cos $(0- 6 Q) c-c

Again it will be found more convenient to approximate by setting
= = E + dE. The following approximate expression for the

elevation correction results:

SE = ^~. cos 5o cot Oo + M. sin ^
fo CQ _

+ Co
~

f(z)
cot g,. (12.26)

^0

In 8E the three terms represent, respectively, (i) the effect of the

wind in refracting the sound, (2) the effect of the wind in convecting
the sound, and (3) the effect of the temperature variation. Investi-

gating the third term in somewhat greater detail, we have, if T
represents the absolute temperature (Sec. 1-6),

C =C = CQ o,

and, assuming a linear temperature gradient, viz.,

- -
so that

we have finally

c =

Co
~

C(Z)
cot 0o = -Zs/C- cot = -Xs/C. (12-27)

CQ 2 2

To a first approximation then the correction in elevation due to

temperature variation is proportional to the horizontal distance of

the source. If the temperature gradient is the not uncommon one of

i F. per 300 ft rise, then the constant C = 300,000 ft. Investiga-
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tion shows that in this case of linear temperature gradient the

sound rays are arcs of circles. It must be noted that eq. (12-26) may
be seriously in error for small 0o, for in this case the correction 5E

may be of the order of E and 0o themselves. Any approximate
formula will be of doubtful value in such a case.

We have already considered the occurrence of total reflection in

Section (12-1). Its influence on the range of audibility will be

further briefly discussed here. Reverting to eq. (i2'2i) we note

that for certain values of z, sec may become less than unity. This

is the indication of total reflection. If u and c change continuously
with height, the ray will have a horizontal tangent at the point of

reflection (see Fig. 12-7). Here again let S be the source and let

FIG. 12-7.

be the angle which the normal to the wave front makes with the

horizontal. The initial and final values of 6 will be denoted by A

and 00) respectively. Then

c i sec 0i CQ sec = UQ (12-28)

where c\ is the velocity of sound at the height of the source and u\ is

the wind velocity at the same place (we are here neglecting the

cross wind). First let us set =
o, getting then for 0i (denoted for

this case by 61)
_ HO U\ -f- CQ f ^

Sec O t
= -

(12-29)

In the second place, let OQ = w and get for 0\ (denoted here by

Sec 0/ - Up Ui CQ

C\
(12-30)
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If sec 9] > i, the angle Oi is real. Thus the condition that it

should be so is

Uo - Ui + Co
- d > o. (12-31)

At any point of the ray for which =
o, we have

c sec 8 = #o u + CQ. (12-32)
Provided then that

"o + c<> > u + c, (12-33)

for all heights between the source and the ground, the ray for which

61 = Gi will actually reach the ground. Moreover, we see that all

rays for which ir/2 >0i>0i will reach the ground (0 real), while

those for which Oi > 61 >o will not reach the ground, since for

them 0o is imaginary, as is evident from substitution into (12-28).

Hence 61 serves to fix a bounding ray, separating totally reflected

rays from those which reach the ground. Beyond the point of

contact of the ray 6\ = Oi with the ground the sound will be

inaudible at the surface. Similarly, if at all heights

CQ UQ > C ft,

the ray 0i = O/, where IT/I < O/ < TT, will be a boundary ray for

those in the negative x direction. Noting that as the figure has

been drawn here, / = cos and n = sin 0, so that

~ = cot + - cos 0,
dz c

y

the range of audible sound on the surface is then

R = p ( cot + - csc e \ dz. (12-34)

Now substituting from (12-32) for and neglecting UCQ + ##o u2

as compared with c2y and CU Q cu as compared with CCQ ^ r2

, we

finally find

R= f\l ^ dz (12-35)
Jo \*0 - C + U Q

- U
V J^

for the range in the positive x direction. The only difference in the

negative x direction is in the sign of #, which must be changed, so

that for this case we have

E! = f\l ^ ;

dz. (12-36)
Jo \*0 - C + UQ + U

V J /
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The integrals (12-35) and ( I2'36) are infinite integrals, for the

denominators vanish for z = o. If the integrals converge, the range
of audibility is limited. If they diverge, it is unlimited and theo-

retically the sound is everywhere audible.

As an illustration, consider u db c as a linear function of z.

Then on evaluation the integrals yield

R, R' = zs J =-
\<r c =b u T u

Thus suppose z8
= 10,000 ft, CQ c = 18 ft/sec, while UQ u

=
50 ft/sec. Then R 47,000 ft, while R' is infinite.

The extension of the above results to include examination of

audibility at all points on the surface is not difficult. The details

will be found in Milne (loc. cit., p. 108). In particular we may note

that with the wind (as above) in the positive x direction, if R#
denotes the range of audibility in the direction making an angle <p

with the x direction, it develops that

Rv
= z,J - z

\Co C + UQ U COS <f>

A sketch of the curves obtained by plotting Rv as a function of <p for

120

T15

Limiting! |

Form as n
jl

Ui

FIG. 12-8.

various values of u and using the above data for co c is given in

Fig. 1 2- 8. For u < co c + #o> the curves are closed ovals. The
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sound is audible at all points within but inaudible everywhere else.

Note that the effect of the component of ti perpendicular to the

lines (p constant is neglected. For u > CQ c + # , the curves

are unclosed but still divide the region into zones of audibility and

inaudibility. Each curve has a pair of asymptotes given by

<f>
= arc cos d

l

Other cases of limited audibility possessing mainly theoretical

interest will be found in Milne, p. 109 ff.

12-4. Sound Ranging. Practical Details. Shell Sounds and

Miscellaneous Phenomena. The preceding section deals mainly
with the theoretical corrections to the observed direction of an

aerial sound source. Here we shall note a few practical details.

During the late war much work was done on the location of cannon

by the sounds received and the times of reception at three or more

listening stations. Consulting Fig. 12-9, let <S denote the source of

the sound and let A^ B, C be three receiving stations containing

microphones
* or other listening devices which are capable of fixing

FIG. 12-9.

accurately the time of arrival of the sound from the gun. Now the

locus of a point the difference of whose distances to two fixed points
is constant is a hyperbola with the two points as foci. Hence the

1
See, for example, Section 10-12.
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source S must lie on the hyperbola with A and B as foci and with the

characteristic difference (//? IA)C , where IA is the time of arrival at

A and tB that at B> and ^ is the velocity of sound. Similarly S must

also lie on the corresponding hyperbola with B and C as loci.

Hence it must lie at the point of intersection of the two hyperbolas,

which fixes the position of the source.

As a matter of fact difficulties arise in the actual use of the above

simple principle. When the sound source is directly ahead or

nearly so, errors will occur which are similar to those which we have

already mentioned in connection with subaqueous localization (Sec.

IO'I4, ioi5). Then there are the problems connected with the

arrangement of an exact timing device. These will not be entered

into here, but we may discuss at greater length the principal

difficulty involved, because it introduces a type of sound trans-

mission we have not previously mentioned in this chapter. (But see

Sec. 1*20.) The sound wave received from the discharge of a gun
is not a single signal but con-

sists generally of three sepa-
rate signals. The first is the

head or bow wave, forming the

envelope of waves emitted by
a projectile as it progresses
with a velocity greater than

the normal velocity of sound.

The following figure (Fig.

ii'io)
1 illustrates this effect

by means of a photograph of

Fio. i2ia. a moving bullet. The bow
wave reaches the observer first

as a sharp crack. The second is the wave due to the fall or explo-

sion of the shell, while the third is the actual gun wave due to the

expanding powder gases at the muzzle of the gun and traveling as

far as the observer is concerned with the normal speed of sound.

Since it is only the gun wave which gives the desired information

about the location of the source, the fact that all three waves are

recorded on the receiving device is a matter of embarrassment.

However, it was found by Esclangon
2 and others that by using

1 Taken with kind permission from "Akustik," Vol. VIII of the "Handbuch der

Physik," Verlag von Julius Springer, Berlin, 1927.
2 E. Esclangon, Revue Scientifique, 2x5, 369, 1921*
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a manometer resonator of large capacitance (i.e., large air volume)
the gun wave could be separated from the others by the much

larger response which it evokes. In this connection the use of

Tucker's hot wire microphone
l to detect the large air motions in the

resonator has proved of great value. The corrections due to wind

and temperature have already been sufficiently emphasized in Sec-

tion 12-3.

The importance of the binaural phase effect in sound signalling

and ranging has already been stressed in connection with subaqueous
acoustics (Sec. IO'I4). This method has proved of equal value for

localization in air, particularly for that of airplanes. The customary

set-up involves four long horns (conical or exponential), two

arranged on a horizontal axis for an azimuth determination and two
on a vertical axis for elevation determination. For night use the

horns may be coupled by means of a unified control system to a

searchlight battery and good accuracy in "spotting" has been

reported.
2

In connection with the character of aircraft sounds it may be

appropriate here to recall the observations of Stewart,
3 who found

that under poor listening (daytime) conditions such sounds are

confined to the lower frequencies of the actual engine noises, while

at night under good listening conditions the high frequencies are far

more prominent than the low. In the former case the explanation
is undoubtedly the greater scattering of the high frequency com-

ponents by the irregularity of the atmosphere (Sees. 1-9 and i-n).
In the latter case, according to Stewart, the question is one of

audition. Sabine 4 found that sounds of frequency 64 and 1024

appear to the ear to be equally loud if they are, respectively,

7 X io4 and 15 X io6 times their minimum audible intensity.

Hence, since the sound intensity in a homogeneous atmosphere falls

off inversely as the square of the distance from the source, the sound

of lower frequency will be the first to fall below its minimum audible

intensity and would cease to be heard before the sound of higher

frequency.
The interesting phenomena connected with explosion waves have

already been touched on briefly in Section 1-9 and numerous

1 See Section 8 -4.

2 See the reported observations of G. W. Stewart, Phys. Rev., 14, 166, 1919.
3 G. W. Stewart, Phys. Rev., 14, 376, 1919.
4 W. C. Sabine, Contributions, Phys. Laboratory, Harvard Univ., No. 8, 1900.
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references given. The principal anomalies connected with such

waves are (a) the abnormally large sound velocity in the neighbor-

hood of the source, (b) a second zone in which the velocity is normal

save for wind and temperature effects, (c) a third zone of inaudi-

bility, and (d) a fourth zone of renewed audibility. More complete
details will be found in the literature.1

QUESTIONS AND PROBLEMS

1. What factors are involved in the reflection of sound "from a

cloud"? Discuss their probable magnitude. Under what circum-

stances will an aerial echo be produced?
2. Enumerate the reasons favoring the elevation of bells and

chimes in towers.

3. Why would not a cloud have the same effect in preventing

transmission as the same amount of water in the form of a film?

4. Why do the irregularities in the planity of the strata in the

atmosphere scatter the short waves more than the long waves?

5. Does the refraction caused by wind and by temperature vary

with the frequency employed and why?
6. Assume a source of sound next the earth on a plane surface.

Discuss the influence of wind and temperature on the shape of the

wave front.

i For example, E. G. Richardson, Sound, pp. 20-25. Also, Handbuch der Physik,

Berlin, 1927, Vol. VIII. Akustik, pp. 677-680.



APPENDIX I

TABLE OF VALUES OF ACOUSTICAL DATA

c = velocity of sound in meters/sec, at 20 C., where not otherwise stated.

PQ = density in grams/cm
3
.

. . gramR = poc, specific acoustic resistance in
sec cm2

The substances are arranged in each group in the order of decreasing /?.

Wood varies with the kind, specimen and relation of the wave direction to the grain.

c

Variable dependent on color and manufacture, as well as on temperature.

327
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APPENDIX II

PROPAGATION OF ELASTIC WAVES IN AN ISOTROPIC SOLID

The propagation of elastic waves through a solid medium is in

general an extremely complicated problem. Fortunately in the

case of an isotropic solid the matter is somewhat simplified, for here

we need but two elastic constants (the others being expressible in

terms of these), namely, the shear modulus n
y defined as the ratio of

shearing (i.e., tangential) stress to shearing strain (i.e., angle of

shear), and the bulk modulus Ey which has been defined in Section

I-I3-

The remaining elastic constants of practical importance are

Young's modulus Y and Poisson's ratio a, which is defined l as the

ratio of the lateral strain to the longitudinal strain. The funda-

mental relations connecting Ey n, Y and a can be shown to be

1
See, for example, Love, Mathematical Theory of Elasticity, 3d edition, p. 101.

Also the somewhat simpler treatment in Edser, General Physics for Students, p. 223.
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= Y/2(<r + i), (II-i)

E = y/3 (i
-

iff), (II-2)

<r =
on reduction.

Let the component displacements of any point in the solid along
the three coordinate axes be , 17, f, respectively. For the external

stresses we shall denote by Xx the normal stress on the yz plane in

the x direction, while the tangential stresses on this plane in the y
and z directions are, respectively, Yx and Zx . The corresponding

quantities for the xz plane are Yy, Xy and Zy ;
and for the xy plane

Z z ,
Xe, and Yz, respectively. By considering the various stresses on

the faces of a volume element AtfAjyAz, we have for the total force

(due to stress) acting on the element in the x, y y and z directions,

respectively:

dZx

Now let us consider the deformation of the parallelepiped element

under the influence of the stress forces by the application of Hooke's

law.

The elongations under the stresses Xxy Yvy and Z2 , along the xy y^

and z axes, respectively, are in accordance with this law:

g= XJY -
*( + Z,)/Y,

g
= Y./Y - *(XX + Z,)/Y, (H-6)

g= ZJY - ,(Y, + XJ/Y.

Adding the above equations, utilizing thereafter the individual

equations to solve for Xx, Yy, and Zz, respectively, in terms of the

elongations, and making use of eqs. (II-i) and (Il-a) to express all
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constants in terms of n and , we finally have the following ex-

pressions:

y, =

wherein we have set

5== ^ + <*?L + <X, (H.8)

which is known as the "dilatation" of the element. The eqs.

(II7) take care of the elongation stresses and strains. The effect of

the components Xyj Yx, etc., is to produce shearing action. Ap-
plying Hooke's law again in the form that the shearing stress equals
the shear modulus times the shearing strain, we have by examination

of the elementary parallelepiped the following relations: l

x _ y = n ( + ^ > X =* Z = n( + \*v x
\ dx dy /

z x

\dx dz /

/at- A~\
(II-9)

The quantities (dy/dx + d/d^), etc., are the shearing strains.

The equality of Xy and Yxy etc., is due to the assumption that the

element is in equilibrium with respect to rotation. Introducing now
the above values ofXxy Xy, etc., into the force expressions (11*5), we

finally have

dXx dXy dX, I n 35

dZx . dZy . dZ, I _ n\38

1 L. Page, Introduction to Theoretical Physics, 1928, pp. 133, 134. Also Love, loc.

cit., pp. 99, ico. Note the difference in notation.
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The equations of motion of the solid due to the internal stresses are

then

(H-n)

Now if we differentiate the first of the above equations with respect
to x y the second with respect to

jy,
and the third with respect to z

and add, we have

2
3, (11-12)

\ J /

since

But eq. (II -12) is the general wave equation already discussed in

Section 1-12. Hence the dilatation 5 is propagated in the form of a

wave with velocity

That this corresponds to a longitudinal wave is easily seen by
considering the special case in which there is no displacement in

the y or z direction. The eqs. (II-n) then reduce to

the usual equation for a longitudinal wave in the x direction.

In the case of a cylinder with its axis along the z direction, if we
twist it in the xy plane, we get a wave of torsion traveling down the

cylinder. For now

^=^=^ = n
dx dy dz >

and our equations become

Pf= V2
, (II- 1 5)

prj
= tfV

2
i?,
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corresponding to a transverse wave traveling with velocity

CT = Vw/p. It is clear that the torsional wave has a smaller

velocity than a dilatational wave in the same substance.

The case of a long narrow rod has already been discussed in the

text (Sec. 4-5). If it is subjected to longitudinal stress in the

direction of its length, say the x axis, the deformations along the y
and z directions will be negligible and we shall have simply in

accordance with Hooke's law

(IM6)

where Y is Young's modulus, while

Yy = ZZ
= O.

The equation of motion then becomes

and we have a longitudinal wave of velocity c* = VY/p. Com-

parison shows that for a large number of solids CL and c' differ by
about 10% roughly, CL of course being the larger. The specific

acoustic resistance for a plane dilatational wave in a solid medium is

thus in general given by

or in the particular case of solid rods more accurately by

R = VSpi. (II-I9)

APPENDIX III

MATHEMATICAL DETAILS IN THE THEORY OF HORNS

The eq. (6-8) of Section 6-1, viz.,

^ ^)^ (III,)
dx2 dx dx ^

is a linear differential equation of the second order. If we have two

independent solutions of this equation in the form u(kx) and v(kx),
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then from the theory of differential equations
l the complete integral

will be in the form

p = Au + Bv, (HI-2)

where A and B are arbitrary.
2

Similarly since

we have

=

A du B dv

A ,.B=-
(HI-3)

where

|8
= and

du

d(kx) d(kx)

The A; coordinates of the two ends of the tube will be, respectively, Xi

and #2. The end values of u and y are denoted by u\ and 2> v\ and

2) respectively. We now form the six determinants

which incidentally satisfy the relationship

(III-4)

By means of these determinants it is possible to express A and B in

terms of any two of the four quantities pi 9 pz, i and 2 (the sub-

scripts referring to the two ends of the tube, as before). Thus we

have

pi
= Aui + Bvi y p 2

= An* + Bv^

The plan is to solve the two equations at the left for A and B and

1
See, for example, Whittaker and Watson, Modern Analysis, jd ed., 1920, p. 194 f.

2 The treatment here follows closely Webster, Proc. Nat. Acad. Sci., 5, 275, 1919.
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then substitute into the equations at the right. We then obtain

We shall find it more convenient to write these in terms of the

volume displacement X = S. Then (IH-6) and (Ill-y) may be

written in the compact form

/>2
=

api + bXl9 (III-8)

(III?)
where

Let the terminal impedances be Zi and Z2 . That is,

Zj = 4!, Z2
= 4-2 -

(III-io)

Zi can be then expressed in terms of Z$ or vice versa. This has been

done in the text, Section 6*1, eqs. (6*13) and (6-14).

APPENDIX IV

BRANCH TRANSMISSION THEORY OF ACOUSTIC FILTRATION 1

If we consider the propagation of sound waves through a cy-

lindrical tube as given by the fundamental eq. (1-17) of Sec. 1-13

the complete solution for the velocity potential is then in the form

1 This theory is based on that of W. P. Mason, Bell System Technical Journal, 6,

258, 1927, but is presented in a modified form.
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The excess pressure (eq. (1-13), Sec. 1-12) becomes

P = PQ<P

while the volume current X = S
,
where S is the cross-sectional area

of the tube or conduit, is (eq. (1-8) of Sec. 1-12)

In order to evaluate the arbitrary constants A and 5, let us call the

pressure and volume current at x o, respectively, pie' and

Xie 1
. On substitution and reduction there results

A =
1/2- (XilkS + pi/p**), (IV-5)

B = -
1/2- (X^S -

/>I/POCO). (IV-6)

On resubstitution there develops

p =
(pi cos kx iZXi sin kx)e*y

^T = (Xi cos ^ -
i/Z-/>i sin **)^,

where we have set
= Z,

the acoustic resistance of the plane wave in the conduit.

Zb

L

B

Consulting the figure (Fig. IV*i), which represents an acoustic

conduit supposed to originate at A and extend to oo
, at distance /

from A (i.e., at B) there is a branch of impedance Z6 . Further

branches follow recurrently at 2/, 4/, etc. The midpoint between

branches is denoted by C, and AC = 2/ is the length of one "sec-

tion" of the line or semi-infinite filter. As in our discussion of
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transmission through a conduit with an attached branch (Sec. 5-1)

we assume the fundamental boundary conditions,

(1) Continuity of pressure at each junction.

(2) Continuity of volume current at each junction.

We now adopt the following notation. The pressure and volume

current at A will be denoted by pi and X\ (the time factor e
wt

is

here left out); at B, the corresponding quantities at the junction in

the conduit to the left will be/>i 2 and X^ while at the junction in the

conduit to the right they will be/>2i and X%\. Let the corresponding

quantities at the junction in the branch be pb and Xi. Finally at C,
the terminus of the first section and beginning of the second, let the

pressure and volume current be p% and X%. The boundary con-

ditions (i) and (2) then become

/>12
=

pb
=

/>21> (IV- 10)

Xu = Xb + Xti. (IV-n)

But introducing the impedance Z& = pb/Xb, we write

X*i = Xn-pblZb. (IV- 1 2)

Now from eqs. (IV-y) and (IV-8) we have (with the omission of the

e t factor for the sake of simplicity)

pi2
=

pi cos kl iZXi sin kl, (IV-I3)

Xn = Xi cos kl - i/Z-pi sin */, (IV-i 4)

whence by (IV-io) and (IV-I2) it follows that

pzi
=

piz
=

pi cos kl iZXi sin kl, (IV- 15)

X2
= (Xi - p,/Zb) cos */ - i(pi/Z

- Z/Zb -Xi) sin kl. (IV-i6)

Furthermore.

p2
=

p2i cos kl iZXn sin kl,

Xz = X2 \ cos kl i/Z-p2i sin ^/.

And on substitution these become after some reduction

p2
=

/>i(cos 2^7 + iZ/2Zb*sm ikl)
-

iZJTi(sin 2kl + iZ/Zb- sin2 */), (IV-iy)

-Y2 = J^i(cos 2>&/ + iZ/2Z6 -sin ikl)
-

(sin a*/ - /Z/Z6 -cos
2
*/) (IV-i8)
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Now since the filter is infinite in the direction to the right, we have

= Z
,

where Z is a constant impedance. That is, to the right of any mid-

point such as C, the rest of the filter is precisely the same as it is to

the right of any other mid-point. The expression for Z
, which will

be termed the characteristic impedance of the filter, is obtained as

follows:

__
.zg ^

/ sin 2k/ + /Z/Zfr-sin
2 kl \

_ Pl * *'

\ cos 2/ + *'Z/2Zb -sin ikl) _~ ~

cos

On solving (IV-2o) for pi/Xi
= Z

,
we obtain finally

^ iv 7
fl/Xl

= Z =

We now set

COS /F = COS

whence

sin W == sin 2/V(i - /Z/2Z& -cot >t/)(i + /Z/2Z6 -tan ^/)

= Z /Z- (sin zk/ - iZfZb
- cos2

kl). (IV-22*)

We can then write

/> 2
=

/>i
cos W - /J^iZo sin ^T, (IV-23)

X2
= ^ cos W -

/>!/Z -sin ^. (IV-24)

Since the symbols are arbitrary, we can write similar relations for

any two adjacent sections. Thus,

pm+l
= pm COS W - iXmZo Sin W,

-yH-i
= -&. cos W -

i/WZo-sin /F. (IV-26)

Incidentally we can also establish by mathematical induction the

following:
1

pm+i
=

pi cos mW /J^iZo sin ^^, (IV-27)

Xm+i = ^ cos w/F - /^i/Zo-sin w/F. (IV-28)

1 Thus we prove by direct substitution that (IV-2y) and (IV-28) are true for the

special case where m - 2. Then assuming their truth for m =
w, we can prove that

they hold for m + I. Hence they are established in general.
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Going back to eqs. (IV'25) and (IV-26), we may write them in the

form

which become, since pm/Xm = Z ,

fm+ i
=

pm<r
iW

> (IV-29)

Xm+ i
= Xme~*w . (IV-3o)

Now ifW is real, the only change in pressure and volume current in

going from section to section is one of phase, i.e., there is no attenu-

ation. On the other hand, ifW is complex, say W = a + iby there

will be attenuation along the filter. Let us suppose that Z& is a pure
reactance (i.e., no resistance or dissipation in the branch). Then

/Z/2Z& will be real and consequently (IV-220) cos W is always real.

IfW = a + iby we have

cos W cos a cosh b i sin a sinh b. (IV-3i)

If a = mr (n any integer or zero), the attenuation is thus given by

cosh b = =t (cos a*/ + iZ/2Z6 -sin 2>t/), (IV-32)

while if there is no attenuation, i.e.,
=

o, the phase change is given

by
cos a = cos 2k/ + iZ/iZb-sm ikl. (IV-33)

Since the transmission is without attenuation for W real, it follows

that there is no attenuation for values ofW such that

- i < cos W < + i, (IV-34)

and the limits of the non-attenuation region will then be given by

cos 2k/ + iZ/2Z6 -sin 2k/ = i. (IV-35)

Another way of looking at the condition for transmission is to be

found from a consideration of the characteristic impedance ZQ.

Thus examining the expression for sin W (eq. IV-22^), we see that,

if W is real, sin W must be real and consequently ZQ must be real.

The condition for transmission without attenuation is therefore

that the characteristic impedance Z shall be real.
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APPENDIX V

GRAPHICAL METHOD FOR OBTAINING TRANSMISSION BANDS IN

ACOUSTIC FILTERS

In the filter theory presented in the Sections 7-2 to 7-5, the

region of no attenuation is given by the limiting values

Zi/Z2 = o and Z\IZ% = 4.

We may simplify the discussion materially by replacing the above

by the statement that for a non-attenuation region the ratio Zi/Z2

must satisfy the inequality relation

4^2

In words, the transmission band must include those frequencies for

which the line and branch impedances are of opposite sign and the

absolute value of the line impedance is not greater than four times

the absolute value of the branch impedance.
We now seek to prove a general theorem concerning the im-

pedance of networks,
1

namely, that the impedance of any non-

dissipative impedance (i.e., reactance) network always has a positive

slope with the frequency as well as discontinuous changes from

positive to negative infinity at anti-resonant frequencies (i.e., those

for which Z =
oo) ?

and may always be represented either by a

number of simple (series M and C) resonant components in parallel

or simple (parallel M and C) anti-resonant components in series.

(Note that when M and C are in parallel, we have seen that

Z = /o>M/(i Moo2
). Such an impedance is what is meant here by

an anti-resonant component.) Let Z' and Z" be two impedances
(of the kind mentioned) and let Zs be their joint impedance in series

and Zp their joint impedance in parallel. Then

Z, = Z' + Z",
while

7 Z'Z"
Zp

Z' + Z"

Differentiating with respect to frequency v, we have

1
Zobel, Bell System Tech. Jour., 2, i, 1923.

(V-2)
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=
dv dv

dZ"
dv '

dZv

dv

77/2 dZ' 7/2 dZn

(Z' + Z")
2 dv

"*"

(Z' + Z")
2 dv

(V-3)

(V-4)

Now since Z' and Z" are both reactances, they will be of either the

form iwM or i/uC. Now d(iuM)jdv = 27r/Mand is positive, and

*/( iluC)ldv = i/iirCv
2 and is also positive. Therefore, both

dZ'ldv and dZ' jdv are positive, whence by (-3) and (-4)
dZ8tdv and dZpfdv must also be positive and Z5 and Zp have positive

slopes with respect to frequency. But any combination of reac-

tances can be produced by additions in parallel or in series. Hence
the theorem is proved.

With the use of this theorem it is possible to determine the nature

of a given filter, i.e., to ascertain whether it belongs to the low pass,

high pass or single band type. As a first illustration consider the

simple ideal case represented in the accompanying diagram (Fig.

Vi). The line impedance is here a simple inertance, i.e., Zi

/?. inertonce

c. capacitance

FIG. V-i.

= iwA/i, while the branch impedance is a simple capacitance, i.e.,

Z2 = i/uCz. It is hardly necessary to stress that this is a purely
ideal illustration. In Fig. V-2, Z/i is plotted against co both for Zi

2:

i.

,
- ^ /i. co

z
*'--snri

Transm ission

!*.!< \+**\

LOW
FIG. V-2.



APPENDICES

and 4Z2 . From the figure it is evident that the region of no attenu-

ation extends from to 0', where at O' the ordinate of Zj is equal and

opposite to that of ^Z\. For it is only in this interval that we have

Zi and Z2 of opposite sign and at the same time |Zi| ^ 4|Z2 |.

The limits of the non-attenuation region are then v\ = o and

"2= (i/7r)Vi/MiC2 (obtained by putting |Zi| = 4|Z2 |). It is

interesting to note that the limiting frequency j>2 is just twice the

resonant frequency of M\ and C2 in series. It is thus evident that

the filtering action is not strictly a resonance phenomenon, although
it uses the elements of resonance. The ideal filter here pictured is

thus a low-frequency pass type.
As a more practical example, let us note that represented in Fig.

7-6 of Section 7*3. Here we have

Zi = iuMi and Z2
= it a>M2 ^

V wC

Plotting Zi/i and 4Z2// as usual, we obtain Fig. V-j. As before it is

FIG. V-3. Single Band Filter

seen that the filter is of the low-frequency pass type. The limits of

the non-attenuation region are v\ = o and

4M2)
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The corresponding electrical line may be represented as in the

following diagram (Fig. -4), where 'OOOOOOOOKP signifies as usual

T
-15*

'

-i-z*T T
FIG. V-4.

inductance (or inertance in the acoustical case) and -||- signifies

capacitance.
Next let us apply the graphical method to the filter discussed in

Section 7-4 and graphically represented in Fig. -5. Here we set

I I

in,

I I

FIG. V5. High Frequency Pass

Zi = *Mio>/(i MiCico2
) and Z2

= icoA/i. We plot as usual Zi/i

and 4Z2//. The first yields a curve which has an infinite discon-

tinuity at w = i/VA/iCi and thereafter has Zi/i negative with

steadily decreasing absolute value. In this case, ^Zz is represented

by a straight line. After Of
is reached, \Z\\ remains less than

1 4Z2
1

for all larger values of co and so the transmission band extends

from 0' to o> . That is, the filter is of the high-frequency pass type
with the lower limit at l

1 The limitations of the discussion in Section 7-4 must, of course, be kept in mind.
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Finally, let us consider the type presented in Section 7-5 and

depicted in Fig. V-6. Here Z\ = iuMi and

FIG. V-6. Low Frequency Pass

-
i)

22 M2C2<o
2 + M2'C2

2 -
i

The curve for \Lz shows an infinite discontinuity at

i

VC2(M2 + A/,')

The transmission band is clearly O'O" with limits

and
*-s\< M2')

27T

Ml + 4M2

It is of interest to note that the lower limit of the band is the anti-

resonant frequency of the side branch.
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APPENDIX VI

THE ASYMMETRICAL VIBRATOR

In the discussion of the mechanical oscillations of a membrane in

Section 2-2 we assumed that the elastic restoring force is proportional
to the first power of the displacement. Strictly speaking, the

restoring force should be regarded as a power series expansion injhe

displacement, thus

F=fS + g? + W+-~j (VI-i)

where under certain conditions g and h may have perceptible values.

The inclusion of the term g%
2

implies that the vibrator is asym-
metrical, the restoring force being different in magnitude for

positive and negative displacements. According to Helmholtz the

structure of the ear drum is of just such an asymmetrical character.

We therefore should consider briefly the nature of the forced

oscillations of such a system.

Suppose that two harmonic forces of frequencies v\ = o>i/27r and

vz = a)2/27r are impressed on the system. The equation of motion

then becomes, neglecting damping,

m +/ +g?= Fi cos co!/ + F* cos co 2/. (VI -2)

Now the first approximation to the solution for the steady state is

(Sec. 2-2)

cos i/ + ,

F*

2
cos co2/. (VI-3)

f 7/7W2

To get the second approximation (i.e., the effect of the term 2
), we

substitute from (VI'j) into this term and write the resulting equation

mi + f = FI cos coi/ + F2 cos co2/

cos2 Wl/ + cos2^
x 2

t
-T T~f
-

v\7~f
-

5\ cos w l^ cos

Letting FI/(/ m^f) =
/i and Fz/(f mu) = /2 and making

some trigonometrical reductions, we have for (VI*4)
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^1 COS w l* + ^2 COS

-
f

"
f/i

2 cos aw,/ -
J/2

2 cos 2o>2/ (VI-5)

[COS (o>j + C02)/ + COS (o>i

It is at once evident that the solution to eq. (VI-5) will contain in

addition to the harmonic terms in coi and w2 as given by the first

approximation other harmonic terms of frequencies 2a>i, 2co 2 (i.e.,

octaves) and (coi + co 2) and (i w 2). It is the latter which are of

significance in the theory of summation and difference tones in the

Helmholtz theory of audition (see Sec. 9-8).
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APPENDIX VII

TABLE OF ABSORPTION COEFFICIENTS (see Sec. 11*5)

This table is a contribution from Dr. P. E. Sabine and the Riverbank Laboratories

and is presented here with their kind permission.
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TABLE OF ABSORPTION COEFFICIENTS (Continued)

347





INDEX
[Numbers refer to pages]

Absorbing materials in architectural

acoustics, 300

Absorption,

by the medium, 67

by walls of room, 289, 293, 300
coefficients of, 289, 291

effect on transmission through tubes,

7!>7*
table of coefficients, 346

Acoustic,

adjustment of rooms, 301

capacitance, definition, 50

conductivity, definition and theory, 48,

5 1

coupling, 153, 156

data, Table of values, 327

depth finding, 283

detectors, 259, 261. See also Micro >

phones

elements, definition, 43
filters (see Filters)

image, 2

impedance, definition, 49, 50. See

Impedance

instruments, 190 ff

lever, 268

measurements, 190 ff

mirages, 309

power transmission, definition, 31, 62,

65. See Transmission

pressure, definition, i, 26, 198

reactance, 50

reflectors, 4

resistance, 50

wave, i, 20 ff

wave length, i

Acoustics,

architectural, 287 ff

atmospheric, 1 1 ff, 307 ff

physiological, 216 ff

Adiabatic gas changes, 22, 27

Additional bands in acoustic filters, 181

Aeolian tones, 312
Aircraft sounds, 325

Amplification,

importance of impedance in, 151

of conical horn, 139

of exponential horn, 145

of horn, 135
of hyperbolic horn, 149
of resonator, 5 1

Amplitude of a wave, definition, 2

complex notation, 33, 72, 77

Analysis of speech sounds, 216

Architectural acoustics, 287 ff

Articulation,

definition, 221, 298
relation with interfering noises, 299
relation with reverberation, 298

Asymmetrical vibrator, 226, 344

Atmospheric acoustics, n, 307 ff

Attenuation factor, 67, 68

Audibility,

abnormal zone of, 14, 325
limits of, 221, 222

Audition,

Helmholtz theory, 227

hydraulic theory 227
time pattern theory, 227

Auricles,

selective property, 8

B

Baffle plates, 8, 211

Beam of sound,

condition for producing, 4

use of high frequency in producing,

250 ff

Beats,

binaural, 230

Bel, unit of sound intensity, 32

Binaural,

beats, 230
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intensity effect, 227

phase effect, 227

use of effects in sound localization, 271,

273, 275

Boundary conditions for acoustic trans-

mission, 9, 36, 73, 94

Boys' type resonator, 58

Brewster's law in acoustics, 113

Branch line,

cylindrical tube as, 123

general theory of, 114

Helmholtz resonator as, 116

orifice as, 120

radiation from, 120, 122, 125, 127

viscosity in, 117, 120

Broca tube, 261

Bulk modulus (see Volume elasticity)

Capacitance,
combined with incrtance, 164

electrical, 55, 57

for spherical wave, 65
of resonator, 50
of tube, 57

Channels in conduits, 75, 83

Compensation,
use in localization of sound, 275, 281

Compensators (see Compensation)

Complex wave notation, 29, 33, 72, 77

Condensation,

definition, 20

for plane wave, 26

for spherical wave, 29

relation to displacement, 26

relation to excess pressure, 23, 26, 30
relation to velocity potential, 23

Condenser transmitter, 199

Conductivity,
as correction to length of air column, 149
calculation of, 51

limits for, 54
of an orifice, 48, 51

parallel connections, 54, 170

Conduits,

application of reciprocal theorem to

transmission through, 89

connectors in, 83

in parallel, 91

narrow, transmission through, 69
transmission through, 67, 69, 72, 75
with a side branch, 114 ff

Conical,

connectors, 83

horns, 138

pipes, 79
Conical horns,

amplification, effect of cut off distance,

140, 141

amplification, effect of horn ratio, 142

impedance of, used as branches, 143

optimum angle, 143

resonance in, 79
Connectors in conduits, 83

transmission through, independent of

direction, 89

Constantinesco system of transmission, 69

Continuity,
of liquids and gases, effect on wave

propagation, 24, 39

principle of, 21

use of principle in boundary conditions,

9, 72> 94

Coupled systems,

mechanical oscillators, 266

resonators, 58

Coupling of acoustic elements,

close and loose, 58, 60

diaphragms and horns, 153

mechanical-acoustical, 1 56

Currents, effect on transmission in sea

water, 235

Cylindrical tube,

used as branch, 123

vibrations in, 56, 123, 137

Cylindrical waves, 3, 233

D

Damping (see Dissipation)

Decay modulus of oscillator, 60

Decibel, unit of sound intensity, 32, 118,

224

Depth finding by acoustic methods, 283

Detectors of sound,

Broca tube, 261

displacement, 259
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microphones, 264

pressure, 261

tunable diaphragm, 272

Diaphragms,
effect of loading, 238, 244, 272

efficiency of, 212

output of energy from, 151, 153

telephone, 208

vibration of, 43, 206

Difference tones, 226

Diffraction,

by head, 15

by obstacles, 19

Dilatation of elastic solid, 328

Displacement,
in a wave, i, 20, 26, 29

positive direction of, 26, 33

Dissipation of acoustic energy (see also

Radiation)

coefficient of, 44, 67
from open tube, 127

from orifice, 66, 120

from resonator, 48

influence of phase on, 45

influence on resonance, 46

rate of, by oscillator, 45, 60, 243, 247,

269

Dissipative force due to radiation from a

source, 66

Distortion,

by microphone, 19

by wind, 309
in loud speakers, 209, 21 1

of intensity distribution by head, 15, 1 8

Echoes, 3, 309

diffuse, 309

discrete, 309

harmonic, 309
method of depth finding, 283
method of iceberg detection, 286

multiple, 309

Efficiency,

of reflectors, 5, 6

of sound generators, 212

of vibrating sphere and plate at high

frequency, 240, 244

Elastic waves in isotropic solid, 105, 328
Electrical analogues of acoustic oscilla-

tions, 54
Elements of a vibrating system, 43

Energy,

density, 31

density in an auditorium, 293, 295
flow in speech, 216

of an acoustic wave, 30

output influenced by surroundings, 38

output of diaphragms and membranes,

244, 250, 269

output of musical instruments, 213

relative values for different speech

sounds, 216

transfer to a vibrating system, 46
variation with amplitude, 32
variation with frequency, 32

(See also Kinetic and Potential Energy)

Equation,
of continuity, 21

wave motion, 23

wave motion for plane waves, 25

wave motion for spherical waves, 28

Equation of motion,

for Helmholtz resonator, 49
for mechanical oscillator, 44
for membrane, 202

for plate, 206

for solid medium, 106, 328
for waves in a horn, 134

in hydrodynamics, 22

Exponential,

connectors, effect on transmission, 88

horns, impedance components, 145

horns, peculiarity in theory, 146

horns, superiority of exponential over

conical, 147

horns, transmission through, 144

Fechner's law, 223
Fessenden Oscillator, 249

efficiency of, 213, 250
Filters (see also Filtration of sound)

additional bands, 181

band pass, 175

design of, 189
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finite, 182

high pass, 171

in liquids and solids, 186

low pass, 1 68

Filtration of sound,

branch transmission theory, 334

change of phase in, 178

condition for attenuation region, 164

graphical method for discussing, 339

lumped impedance theory, 161

region of inaudibility in, 170, 174, 177

simple methods of, 1 59

Flange, effect on radiation from an open-

ing, 130
Forced oscillations of a tube, 61

(See Mechanical oscillations; Vibra-

tions)

Free oscillations,

compound resonator, 58

effect on frequency due to damping, 45,

60

effect on frequency due to medium, 238,

247
Helmholtz resonator, 49
mechanical oscillator, 45, 60

Fresnel's equations for reflection at inter-

face, 113

Fresnel's zones, use in study of reflection,

6

G
Generators of sound,

efficiency of, 212

in water, 248

(See also Sound sources; Diaphragms)
Green's theorem, applied to conductivity

calculation, 52

H
Head, effect of, on sound received by ear,

18

Hearing (see Audition)

Heat conduction, effect of, in damping
sound waves, 68

Helmholtz reciprocal theorem, 18

applied to receivers and transmitters,

151

applied to transmission through con-

duits, 89

Helmholtz resonator, 47
used as a side branch, 116

used in filters, 169

High frequency radiation, 250
beam transmission, 253

experiments of Wood et al., 258
increase in efficiency due to, 240, 244
measurement of velocity, 259
used for signalling, 254

Homogeneity of medium, importance in

transmission, 232

Horns,

amplification by means of, 135

conical, 138

coupling with other acoustic devices,

'53, *56

exponential, 144

hyperbolic, 147

impedance theory of, 132, 332

parabolic, 149

throat impedance, importance of, 152

used as transmitters and receivers, 151

Huyghens* principle, 4

Image, acoustic, 3

Impedance,

acoustic, definition, 49, 50

change of, at a junction, 94

characteristic, 168, 186, 337

distributed, theory, 132 ff

effect on amplification of horns, 135,

151
.

matching in finite filters, 184

measurement by acoustical method, 190
measurement by electrical method, 190

measurement by other methods, 194

mechanical, 44

mid-branch, 184

mid-series, 184

motional, 190
of cylindrical tube as a branch, 124, 137
of horns, theory, 132 ff. See Horns

of orifice, 120, 193
of porous materials, 195
of resonator, 116, 118, 194

point, 55

specific, 63
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specific, for a plane wave, 63

specific, for a spherical wave, 63
table of values for specific acoustic

resistance, 327

Impulsive sounds, 303
Incidence of acoustic waves on an inter-

face,

normal, 36, 94

oblique, 96

Inertance,

combined with capacitance, 164

definition, 50
due to reaction of medium, 242, 246
for high frequency radiation, 246
for spherical wave, 64
in acoustic filters, 164

Intensity of an acoustic wave, 31

expressed in terms of excess pressure, 32
levels of, 32
measurement by comparison methods,

197

measurement by pressure observations,

198

measurement by resonance methods,

i96

of a plane wave, 63
of reflected wave at boundary, 95, 99
units of, 31, 32
variation with distance, affected by

absorption, 67
variation with distance, cylindrical

wave, 232

variation with distance, spherical wave,

65

Intensity difference in audition,

limit of perceptibility, 224

minimum audible, relation to fre-

quency, 325

Interferometer,

sonic, 259

U-gauge, used to measure pressure, 199

Isothermal gas changes, 27

Isotropic solids, transmission of sound

through, 105, 328

Junctions in acoustical conduits, 72, 75,

81, 83, 89, 91

K
Kinetic energy,
of acoustic wave, 30
of air in an orifice, 51

of vibrating membrane, 203
relation to potential energy for a plane

wave, 31

Kinetic theory,

application to high frequency wave

propagation, 24

Kundt's tube experiment, 6 1, 71

Length correction to a tube, 149

Light body principle, 239

Loading of sound source by environment,

38, J 52>
J 53

Localization of sound,

from cannon, 322
in air, 316, 322

principles used in, 273

use of binaural effects in, 227, 273, 275

use of compensation in, 275

Loudness,

Fcchner's law, 223

sensation units and levels, 224

Loud speakers, 208 ff

condenser type, 212

cone type, 209
distortion in, 209

use of baffle, 21 1

M
Machinery noises, 305
Manometric capsule, use in measuring

impedance, 194

Mechanical impedance, definition, 44.

See Impedance
Mechanical oscillations, 43 ff

analogy with electrical, 54

of membranes and diaphragms, 202

of vibrating string, 61

Mechanical-acoustical coupling, 156

Membranes,
effective mass, 203

effective stiffness, 204

natural frequency of, 203, 204
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nodal lines in, 204

radiation of energy from, 45, 244, 269
vibrations of, 43, 202

Meteorological sounds, 311

Microphones,
button type, 264

condenser type, 199

considered as standard coupled systems,

269
difficulties in adjustment and opera-

tion, 270
for subaqueous reception, 264 ff

hot-wire, 197

matching for phase, 271

pressure type, 264

ribbon, 201

tuning for subaqueous reception, 270

Mirages, 309

Mirrors,

elliptical, 6

parabolic, 6

plane, 2

selective property of, 6

Multiple receiver systems, 278

N
Natural oscillations (sec Free oscilla-

tions; Mechanical oscillations)

Nodal lines in membranes and dia-

phragms, 204

Nodes in tubes, 71

Noise,

interfering effect on articulation, 299
of machinery, 305

O

Obstacles, scattering by, 19

Orifice,

as a branch in a conduit, 120

conductivity of, 51

effect of increasing number of orifices

in a conduit, 121, 160

effect of viscosity in, 120

radiation from, 122, 127

Oscillations (see Mechanical oscillations;

Free oscillations; Vibrations)

Oscillograph, use in detecting high fre-

quency signals, 258

Phase of a wave,

definition, 33

equality of, for two sources, 3

equality of, for two waves, 33
influence of reflection on, 34, 36
influence on energy emitted by vibra-

tor, 38

Phase change,
at change in area of a conduit, 74, 78

due to constriction or expansion in a

conduit, 78
due to reflection at interface, 34, 36, 95

in filtration, 178

Phase difference,

between excess pressure and particle

displacement, 26

between excess pressure and particle

velocity, 62, 64

Phonographic reproduction, 156

Phonometer for sound intensity, 197

Physiological acoustics, 216 ff

Piezo-electric effect, 255

use in producing high frequency os-

cillations, 257
Pin-hole probe for measuring pressure, 198

Pinnae (see Auricles)

Pipes (see Conduits and Horns)

Piston,

high frequency radiation from, 250
use of, in discussing oscillations of mem-

branes, 43, 203

Pitch,

differences, 225

levels, 225

Planarity of surfaces, effect on sound re-

flection, 4

Plane waves,

absorption by medium, 67

acoustic impedance of, 63

intensity of, 32, 62

transmission by, 62

Plates (see Diaphragms)
Poiseuille coefficient, 69, 70
Potential energy,

of a vibrating membrane, 203, 204

of an acoustic wave, 30
of an acoustic wave in an orifice, 53
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relation to kinetic energy in plane

wave, 31

Power factor,

in acoustical oscillations, 62, 65
in electrical oscillations, 55

Power transmission, definition, 31. See

Transmission

Pressure,

acoustic, definition, I

measurements, 198

Propagation,
of elastic waves through isotropic solid,

328
of sound through atmosphere, theory,

312

(See Transmission)

Q
Quartz piezo-electric oscillator, 255

Quincke-Herschel tube, 91

R
Radiation inertia coefficient, 242, 246

Radiation of sound,

from circular plate, 244

from diaphragms and membranes, 244

from open pipe, 127

from orifice, 122, 127

from point source, 28, 63

from spherical source, 240

high frequency, 250, 254
in water, 240, 244, 269

optimum, by proper coupling, 153

Radiation resistance coefficient, 48, 63,

125, 242, 246

Range,
effect of viscosity damping on, 68, 233

of cylindrical wave, 233

of signals in air, 13, 14, 316
of signals in water, 233

of spherical wave, 65, 233

Ranging (see Sound ranging and signal-

ling)

Rarefaction, 26

Rayleigh disc, used in measuring inten-

sity, 196

Reactance,

acoustical, 50

definition, 45
for resonator, 118, 194
for spherical wave, 64

mechanical, 45

networks, 339
Receivers of sound,

application of reciprocal theorem to,

Broca tube, 261

microphones (see Microphones)

multiple systems, 278

Reciprocal theorem (see Helmholtz's

reciprocal theorem)

Reflection,

at a boundary for oblique incidence, 96
at boundaries in gaseous media (normal

incidence), 36
at boundaries in liquids (normal inci-

dence), 34
at change in area of a conduit, 9, 72
from concave mirrors, 6

from dry to moist air, 38
from pinnae, 8

from plane wall, 2

from small finite areas, 5

influence on phase, 33, 36

selective, 6

total, 12, loo, 308

Reflectors,

acoustic, 2, 4

elliptical, 6

parabolic, 6

plane, 4, 6

Refraction,

convective, n, 14, 311

selective, 14

temperature, 13, 309

Resistance,

acoustic, 63, 64

change of specific resistance at a junc-

tion, 94
for a resonator, 118, 194

for a solid medium, 107
for an orifice, 120, 193

mechanical, 44

specific, 63, 64

table of values of specific resistance,

3*7
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Resonance,

diffuse, 46

frequency (see Frequency)
method of measuring intensity, 196
of electrical oscillators, 55

of mechanical oscillators, 45
of mechanical oscillators as affected by

dissipation, 46
of resonators, 49, 58
of tubes, 56
of tubes as affected by dissipation, 151

sharp, 46

Resonators,

Boys* type, 58

capacitance of, 118, 194

compound, 58

Helmholtz, 47
inertance of, 118, 194
reactance of, 118, 194
resistance of, 118, 194

Reverberation, 4, 287, 295

Eyring*s formula, 292
Sabine's formula, 290
Strutt's generalization, 291

time, connection with articulation, 298

time, optimum, 295
Ribbon microphone, 201

Scattering of sound,

by obstacles, 19, 309

by reflection and refraction, 14

effect on transmission, 14, 69, 235
selective character of, 14, 325

Schottky's law of depth reception, 152

Sea, as an acoustic medium, 231
Section of acoustic filter, 162, 184, 335
mid branch, 184

mid series, 1 84

Seismic waves, velocity, 108

Selectivity of sound transmission,

branch lines (see Branch lines)

filters (see Filters)

stethoscope, in
tubes in parallel, 91

tubes with constrictions and expan-

sions, 77, 159
Sensation unit and level (see Loudness)

Shadows, 15

Shell sounds, 324

Signalling (see Sound ranging and sig-

nalling)

Silence zones in explosion waves, 15, 325

Sirens, efficiency of, 212

Snell's law of temperature refraction, 13

Sound generators (see Transmitters)

Sound proofing, 302
Sound ranging and signalling,

in air, 13, 3i2ff
in water, 231 ff

Sound ray in non-homogeneous medium,

231

Sound sources,

definition of
"
constant*' source, 38

diaphragms (see Diaphragms)
horns (sec Horns)
low frequency, 248

reaction of medium on, 240, 244

thermophone, 213

Specific heat ratio, significance for sound

velocity, 10, 27

Speech,

energy flow in, 216

frequencies important in, 221

Speech sounds,

energy in, 216

nature of, 216

Spherical waves,

absorption by the medium, 67, 233
acoustic impedence of, 64
in conical pipes, 79

intensity of, 65
transmission in, 63

Steady state, 44, 49, 72

Stethoscopes, 103, 108

application of principle to signalling,

236

Stiffness coefficient,

in mechanical oscillator, 44

in resonator, 48

(See also Capacitance)
Stress and strain in solid media, 105, 328
Summation tones, 226

explained by asymmetrical oscillator,

344

Supersonics, 254
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Thermophone, 213

Tones,

difference, 226, 344

summation, 226, 344

Tonpilz (Standard coupled system),

266

Transmission of acoustic energy,

across boundary of two media, 94, 96

amount of attenuation in filters, 178

Constantinesco system for, 69

effect of change in area of tube on, 72

from and to water, 236
in a plane wave, 62

in a solid medium, 105

in a spherical wave, 63

in a stethoscope, 103

through a conduit with side branch,

theory and illustrations, 114 ff

through a conical tube, 81

through a tube, 69, 72

through a tube, with absorption by

viscosity, 68

through a tube, with absorption by

walls, 71, 72

through a tube with bends, 72

through a tube with constrictions and

expansions, 75

through an acoustic filter, 161, 334, 339.

(See Filters)

through parallel tubes, 91

through the hull of a ship, 237

through three media, 100

through walls and floors, 302

Transmitters,

application of reciprocal theorem to,

'5 1

condenser, 199

diaphragms, 206

efficiency of, 212

high frequency, 254
loud speakers, 208

low frequency, 248

microphones (see Microphones)
oscillators (see Oscillators)

Trumpets (sec Horns)

Tubes and pipes (see Conduits and

Horns)

Velocity,

of "bow" wave in bullet flight, 324
of elastic waves in solids, 108, 331

particle, 20, 25, 29

Velocity of sound,

abnormal values, 39, 326
effect of temperature on, 10, 13, 309
effect of viscosity in tubes, 68

effect of water vapor in air on, 307
effect of wind on, u, 311
in a compressible fluid, 10

in a gas, 10

in a liquid, TO

in sea water, 233
table of values, 327

Velocity potential,

definition, 21

plane wave, 24

spherical wave, 28

Vibrations,

of a diaphragm, 206

of a membrane, 202

of a plate and effect of medium on, 244

of a sphere, 240
of a string, 61

of an air column, 56

Vibrators (see Membranes, Diaphragms,

Sources, etc.)

Viscosity,

damping influence of, 67

effect of, at an orifice, 117, 120

effect of, in capillary tubes, 69

effect of, in tubes, 68, 117, 120

Volume elasticity, 10, 27, 107

Vowel sounds,

characteristic frequencies, 216

energy values, 216

W
Wave front, definition, 4

Waves,

cylindrical, 3, 233

explosion, 14, 325
fundamental theory of acoustic, 20

"head" or "bow" waves in flight of

bullet, 324
















